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ABSTRACT
Response behaviors of chironomid larvae, Chironomus riparius, were analyzed by fractal dimension and artificial
neural networks after the specimens were exposed to an insecticide. The two-dimensional movement tracks of
individual specimens were continuously recorded before and after the treatments of diazinon at the concentration
of 0.001 ppm. Fractal dimensions were obtained from the movement tracks and appeared to decrease consistently
after the treatments. Subsequently, parameters such as speed, acceleration, stop number, maximum length,
locomotory rate, and meander were extracted from the 1-h segments and were used as input data for training
with the self-organizing map (SOM). The movement tracks were accordingly classified before and after the
treatments by the trained SOM. Fractal dimension and the SOM were useful for extracting information residing
in behavioral data and could be an alternative tool for automatically detecting toxic substances in an aquatic
environment.
Keywords: chironomids, diazinon, fractal dimension, monitoring, movement, pesticide, response behavior, self-
organized map.

1 INTRODUCTION
Recently, behavioral detection of indicator species has been regarded as an efficient monitoring tool
in aquatic ecosystems. Response behaviors have been reported to be sensitive to sub-lethal expo-
sures to various chemical pollutants [1, 2]. Dutta et al. [2] studied the relationships between brain
acetylcholine-esterase activity and optomotor behaviors of bluegills in different concentrations of
diazinon, and indicated that behavioral bioassay may be more sensitive than other types of testing.
Blüebaum-gronau et al. [3] characterized movement behaviors such as rheotaxis disorientation when
affected by toxic substances. Fishes were frequently used for monitoring the presence of toxic chem-
icals [4–8]. Oshima et al. [9] observed the suppression of sexual behavior in male medaka exposed to
estradiol. Recently, behavioral monitoring in response to various toxic chemicals has been conducted
on aquatic invertebrates: crustaceans [10–12], crustacean parasite [13], snails [14], and insects [15].

Previous studies on behavioral response, however, have been mainly focused on the analyses of
single behaviors or combination of single behaviors. Computational analyses on overall movement
have not been extensively carried out due to complexity residing in behavioral data. To cope with
the problem of complexity in the data, theoretical research has been conducted on analyzing the
movement tracks along with the development of study on biological motion [16]. Alt [16] modeled
the movement of organisms, such as the circling paths of gametes or the meander searches by isopods,
while Scharstein [17] revealed a complex directional autocorrelation function regarding walking paths
of beetles in the absence of orienting stimuli. Recently, exploration behaviors of rats were studied on
dynamic perspectives [18, 19] and statistical discrimination of motion [20]. Gerhardt et al. [15, 21,
22] used the quadrupole impedance conversion technique to monitor stress from chemical disturbance
on various aquatic invertebrates including Daphnia, Gammarus, and mayflies.
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Among the computational studies on evaluating the movement data, measure of the movement
tracks has been efficiently used to quantitatively characterize behavioral states of the specimens.
Tourtellot et al. [23] analyzed the move length and turn definition in the analysis of orientation of
cockroaches. Recently, fractal dimension [24] has been used for addressing behavioral changes with
mathematical precision and ease of comprehension. Johnson et al. [25] and Wiens et al. [26, 27]
suggested that fractal dimensions of pathways provide information on movement characterization
not available through absolute measures of pathway configurations. Alados et al. [28] reported that
fractal dimension declined with stress from pregnancy and parasitic infection.

Although the computational methods were effective in revealing data structure, the parameters
(fractal dimension) obtained from mathematical analyses are highly compressed and usually express
behavioral states of the specimens only in overall terms. Local and global changes in the movement
data, however, are both important in characterizing the tracks’ shape and are equally critical in
detecting behavioral changes. Recently, artificial neural networks have been used for recognizing
response behaviors. Kwak et al. [8] utilized the multi-layer perceptron (MLP) and detected changes
in the movement patterns of medaka fish before and after the treatments of diazinon. The MLP,
however, recognized the movement patterns in the supervised manner by requiring the templates a
priori. The self-organizing map (SOM), on the other hand, is useful for learning the pattern in an
unsupervised manner, and has been implemented to classify response behaviors of indicator organisms
such as cockroaches [29] and medaka fishes [30] without previous knowledge.

Recently, fractal dimension and artificial neural networks have been used in combination to extract
the local and global information at the same time. Ji et al. [31] applied the MLP and fractal dimension
to medaka fish treated with copper. The movement patterns were initially chosen by experienced
observers. Subsequently, the parameters were selected from the movement patterns and were trained
with the MLP. After recognition of the patterns, fractal dimension was used to confirm changes in
data structure before and after the treatments. In this study, however, we intended to analyze the
movement data without prior knowledge. Fractal dimension was first used to reveal overall changes
in data structure after the treatments, while the SOM was subsequently implemented to classify
movement patterns.

2 MATERIALS AND METHODS
2.1 Test specimens and observation

A strain of Chironomus riparius provided by the Korea Research Institute of Chemical Technology
(KRICT; Taejeon, Korea) was used for observation. The stock population was reared with an artificial
dry diet (Tetramin) under the light regime of L10:D14 (light phase from 8:00 a.m. to 6:00 p.m.) at a
temperature of 23 ± 0.5◦C. Fourth instar larvae were individually placed in an observation aquarium
(6.5 cm × 5.5 cm × 1.5 cm). The height of the aquarium was minimized in such a manner that two-
dimensional image of the specimens was accordingly produced while the height did not constrain
swimming of the specimens.

Diazinon, dissolved in dimethylsulfoxide (DMSO; 10 mg/L), was introduced into the aquarium at
the concentration of 0.001 mg/L. Movement of the specimens were continuously observed from the
top-view at 0.25 s intervals before (10 h) and after (10 h) the treatments. The analog data captured
by the CCTV camera were digitized using a video overlay board (Dooin Electronics Co., Ltd.;
OSCARIII�), and were subsequently sent to the image recognition system (developed by theArtificial
Intelligence Laboratory, Department of Electronics Engineering, Pusan National University) to locate
the target organism in two-dimension (Fig. 1). The middle point of the body was recorded as the x, y
location of the specimens in the observation aquarium. In case the specimens moved, the center of



C.W. Ji et al., International Journal of Ecodynamics. Vol. 2, No. 1 (2007) 29

Aquarium
6cm x 5.5cm x 1.5cm   

CCD
camera 

A/D Interface

Image Process

Recognition S/W 

Personal computer 
Tracking program 

Figure 1: Observation system for automatic recording and detection of movement behaviors of chi-
ronomid larvae.

the moving portion of the body was recorded as the position of the specimens. For image processing,
stable conditions were maintained for the test specimens in the monitoring system. Disturbances in
the observation aquarium were minimized; oxygen and food were not provided to the test specimens
during the observation period. Light and temperature conditions were the same to the conditions of
the stock population, while the other observation methods were carried out based on Kwak et al. [8]
and Park et al. [30].

2.2 Fractal dimension

The overall feature of the images on the movement tracks of the specimens was extracted by fractal
dimension. The dimension of the movement tracks was addressed as a number through the box
counting method. Whilst the topological dimension of a line is always 1 and that of a surface always
2, the fractal dimension may be any real number between 1 and 2, since observation was carried out in
an aquarium two-dimensionally. The fractal dimension Df is expressed in the number of boxes, N (r),
with scale r covering data points (x, y) (location of the specimens recorded in 0.25 s interval) [25]:

N (r) ∼ rDf . (1)

N (r) could be plotted versus box size r using a log-log scale. The slope of the log-log plot indicates
the fractal dimension Df .

The whole data during the observation time were divided into 1-h segments with the overlapping
time for 30 min. For example, if the first segment was initiated from point 0 h for the first 1 h, the
next segment started from point 0.5–1.5 h. Subsequently, the third segment spanned points from 1 to
2 h, and so on. This was continued until the pointer reached 10 h at the 19th segment. Time averaged
fractal dimension for the segment, k, during the total observation period (either before or after the
treatments) was defined by:

Df = 1

T

19∑

k=1

Df (k). (2)

Here, T ( = 19) is the total number of the image segments.
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2.3 Self-Organizing Map (SOM)

While the overall feature of the movement data was computationally evaluated in one parameter,
fractal dimension, the movement tracks were further classified by the SOM [32, 33] in the segment-
explicit manner (i.e., “segment by segment” training). The SOM, consisting of two layers of input and
output (Fig. 2), performs a non-linear projection of data onto a space in low dimension (conventionally
two), and provides a patterned map of input data without prior knowledge [32, 33]. The output layer
consists of M × N computation nodes (i.e., 20 × 14 in this study) on a two-dimensional grid. The
Euclidian distance between weight vector and input vector was calculated through learning processes.
Of output neurons, the best matching neuron, which has the minimum distance, is chosen as the
winner. For the best matching neuron and its neighborhood neurons, the new weight vectors are
updated as:

wij(t + 1) = wij(t) + α(t)[x(t) − wij(t)], (3)

where t is the iteration time and α(t) is the learning rate. The learning rate accordingly decreases as
the system converges. A detailed description regarding application of the SOM to behavioral data
was given in [30, 31].

Parameters calculated from 1-h segments of the movement tracks were used as input data for
the SOM. Based on the experience of test specimens and the results from the previous studies on
continuous observation of response behaviors [8, 31], the following six parameters of the movement
tracks were selected for the test specimens: speed (mm/s), acceleration (mm/s2), stop number (stop
frequency during 1 h), maximum length (maximum movement distance observed in the aquarium),
locomotory rate (mm/s, movement distance without stop time), and meander (rad/mm, angle change
per movement distance).
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Figure 2: Schematic diagram of the Self-Organizing Map (SOM).
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3 RESULTS
3.1 Fractal dimension

In general, activity decreased after the treatments of diazinon. Figure 3 shows examples of the
time-averaged fractal dimension along with the movement tracks observed in 1-h segments. Before the
treatments, the specimens moved actively, and the movement tracks were prevalent on the image of the
observation aquarium (Fig. 3(a), (e), (i)).After the treatments, the movement tracks partially occupied
the area of observation aquarium (Fig. 3(c), (g), (k)). During exposure to diazinon, intermittent shaking
patterns in small scale were observed.

The slope of the log-log scale was almost linear and fractal dimensions were in the range of 1.78–
1.84 before the treatments (Fig. 3(b), (f), (j)), while the slope decreased in the range of 1.60–1.68 after
the treatments (Fig. 3 (d), (h), (l)). For all the tested 10 specimens, fractal dimensions consistently
decreased (Fig. 4). Based on the paired t-test (two tails), significant difference was observed before
and after the treatments (t = 7.607, P < 0.001). This demonstrated that the data structure of the
movement tracks was affected by the treatments of diazinon.

3.2 Self-organizing map (SOM)

After revealing difference in fractal dimensions before and after the treatments, the different types of
the movement tracks were identified using SOM. A dendrogram of the hierarchical cluster analysis
was used with the Ward’s linkage method based on Euclidean distance in the MATLAB environment
(The MathWorks, 1998) (Fig. 5). First, the segments of the movement tracks were broadly separated
before and after the treatments. The movement tracks before the treatments occupied the top area

Figure 3: Fractal dimensions measured and the movement tracks (1 h) of chironomid larvae before
and after the treatments.
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Figure 4: Changes in fractal dimension (average) in different specimens before and after the
treatments.

(cluster 1), while the movement tracks after the treatments were placed in the bottom area (Cluster
2). The mapping by SOM confirmed the difference observed in fractal dimension before and after
the treatments (Fig. 4), and indicated that variation residing in the movement data was accordingly
projected onto the trained SOM. The SOM further classified the different movement patterns in the
subclusters as shown on the map (Fig. 5). The movement tracks were accordingly visualized by the
profiles of the parameters matching the clusters of the SOM (Fig. 6). Speed, acceleration, and stop
number presented the diagonal gradients (from upper right to bottom left), while locomotory rate
and meander tended to show the vertical gradient. Maximum length was selectively higher at the
upper left corner of the map. Within the upper area (cluster 1), the group of subclusters 1-a and 1-b
were further divided from subcluster 1-c (Fig. 5). In subclusters 1-a and 1-b, speed, acceleration, and
locomotory rate were in the lower range while stop number and meander were relatively in the higher
range (Fig. 6). In contrast to the group of subclusters 1-a and 1-b, the activities shown in subclusters
1-c were in the highest range. This matched the actual movement tracks (Fig. 7). The movement
tracks shown in subcluster 1-c covered almost the entire area of the observation aquarium during the
observation period (1 h).

Subclusters 1-a and 1-b were further divided according to differences in maximum length, stop
number, and meander (Fig. 6). Subcluster 1-a was characteristically high in maximum length and was
relatively lower in meander and stop number compared with subcluster 1-b. Subcluster 1-a presented
active movement mainly along the boundary area, while the movement for subcluster 1-b occurred
more frequently in the center of the aquarium (Fig. 7). It is understandable that the movement tracks
belonging to subcluster 1-a showed the highest range in maximum length since the specimens moved
around the boundary area of the observation aquarium.

The movement tracks belonging to the bottom area (cluster 2) were also subdivided. The group
of subclusters 2-a and 2-b occupied a relatively smaller area in the left bottom corner of the map
and were characteristic with the lowest range in stop number (Fig. 6). The group of subclusters
2-a and 2-b was also in accord with lower speed and lower acceleration compared with subcluster
2-c. Subcluster 2-c was deviated from the group of subclusters 2-a and 2-b by matching with the
lowest range in locomotory rate. Subcluster 2-c was also in accordance with the higher levels of stop
number, meander, speed, and acceleration. Activities for the group of subcluster 2-a and 2-b appeared
to slow down, while stop number also decreased to the minimum range (Fig. 6). In contrast, activities
were relatively higher along with higher degree of meandering in subcluster 2-c. Subcluster 2-a was
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Figure 5: Clustering of the movement tracks by the SOM (left) and cluster distances according to the
Ward’s linkage method (right). The capital and small alphabets listed on the names of the
hexagonal map (left) represent ‘before’ and ‘after’ the treatments, respectively.
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Figure 7: The movement tracks (1 h) typically observed in different subclusters listed on the SOM
(Fig. 5).

further separated from subcluster 2-b by maximum length; shorter for subcluster 2-b and longer for
subcluster 2-a (Fig. 6). The parameters shown in subcluster 2-a was characteristic with relatively
higher levels of locomotory rate and maximum length, and relatively lower levels of meander.

The movement tracks shown in subcluster 2-c covered a wider range in the aquarium compared
with the group of subclusters 2-a and 2-b (Fig. 7). The movement pattern in subcluster 2-c was
somewhat similar to the movement tracks shown in subclusters 1-a before the treatments. However, the
movement tracks in subcluster 2-c covered less area in the boundary zone and crossed the observation
aquarium more frequently. The movement tracks in subcluster 2-a were similar to the movement tracks
in subcluster 1-a in the sense that the specimens in both subclusters 1-a and 2-a stayed at the boundary
area for a longer time (Fig. 7). However, activities were generally lower in subcluster 2-a by showing
lower levels in speed, acceleration, locomotory rate, and maximum length (Fig. 6).

Statistical difference was accordingly observed between clusters and subclusters (Fig. 8). Speed
and acceleration were generally higher in cluster 1, showing the highest range in subclusters 1-c as
stated before. Within cluster 2, speed and acceleration were higher in subcluster 2-c than in the other
subclusters. Stop numbers showed a similar trend to speed except the case for subcluster 2-c, showing
the highest range similar to the level of cluster 1. Maximum length was distinctively high in cluster
1-a followed by cluster 1-b, while locomotory rate was exceptionally low in subclusters 2-b and 2-c.
The opposite trend to locomotory rate was observed in meander with the highest range in the group
of subclusters 2-b and 2-c.
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Figure 8: Variation in different parameters of the movement tracks of chironomid larvae according to
subclusters listed on the SOM. Statistical significance between the treatments was based on
the Tukey test (F0.05(1),6,300 = 2.13). F values (ANOVA) for each parameter were provided
on y axes (Fig. 5).

4 DISCUSSION AND CONCLUSIONS
In this study, we quantitatively characterized the complex data for behavioral response of the chi-
ronomid larvae to chemical treatments. Changes in data structure were revealed by fractal dimension,
showing consistent decrease after the treatments (Figs 3–4). These results confirmed previous studies
on decrease in fractal dimension in animals such as fish with toxic treatments [31] and ibex with
biological disturbances (e.g. parasite and pregnancy) [28].

Asimilar study has been carried out by Ji et al. [31] by application of fractal dimension and artificial
neural network in combination. Ji et al. [31] used the MLP, and the data patterns were initially selected
as the templates by experienced observers before training with the MLP. Subsequently, the MLP was
used to recognize the trained patterns. After recognition of the MLP, fractal dimension was used to
confirm changes in data structure before and after the treatments. In this study, however, we analyzed
the movement data without prior knowledge. Initially, changes in data structure were confirmed by
calculation of fractal dimensions. Subsequently, the movement tracks were trained with the SOM
(Fig. 5) in the segment-explicit manner.

Visualization by the SOM was further useful for characterizing the movement patterns (Figs 6–8).
The profiles of parameters in combination were efficient in revealing the overall characterization of
the different patterns (Fig. 8). The results led to provision of three types of symptom of the movement
behaviors of the test specimens after the treatments of diazinon at low concentration. In addition
to the lower levels of speed and acceleration, pattern 1 (subcluster 2-c) showed higher levels of
stop number, meander, and lower levels of maximum length and locomotory rate, while pattern 2
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(subcluster 2-b) showed the lowest range in stop number and maximum length. Pattern 3 (subcluster
2-a) was somewhat in between patterns 1 and 2, showing relatively higher levels of locomotory rate
and maximum length, and relatively lower levels of meander.

Among the clusters on the SOM, however, there were some mixed segments between ‘before’ and
‘after’ the treatments. In subcluster 1-c, for instance, the movement segments after the treatments
were observed, although cluster 1 generally covered the movement segments before the treatments.
In this case, however, the mixed segments occurred according to individual specimens in groups. The
majority of the movement tracks from individuals C, G, and H were included in subcluster 1-c, while
the movement segments before and after the treatments from the specimen B occurred in subcluster
1-a. In cluster 2, however, the movement tracks after the treatments were mostly observed. The
movement tracks before the treatments in cluster 2 were not observed as frequently as observed in the
movement tracks after the treatments shown in cluster 1. This indicated that the movement patterns
observed in cluster 2 were more characteristic in revealing response behaviors of the specimens
treated by the chemicals. The mixture of the segments in cluster 1 could be understood from variation
of activities. Regarding that subcluster 1-c showed the most active movement patterns (Figs 6-8),
some strongly active individuals could still remain in subcluster 1-c after the treatments. This was
understandable by considering that concentration applied in this study was at a fairly low level.
According to clustering in Fig. 5 (cluster 2), the data obtained in this investigation demonstrated
that the changes in movement tracks are inducible at a low dose of diazinon (0.001 mg/L). Although
similar behavioral studies on the larvae of Chironomus riparius treated with diazinon have not been
reported, diazinon has been treated at the range of 0.1–10 mg/L for behavioral study on other animals
[8, 30, 34, 35].

In conclusion, complex data of response behaviors of indicator species treated with toxic chemicals
could be analyzed by fractal dimension and SOM. Fractal dimensions were consistent in showing
lower values after the treatments. SOM was feasible in classifying the movement patterns before and
after the treatments in the segment-explicit manner and would be useful for systemically characteriz-
ing the symptoms of the affected specimens. The use of fractal dimension and the SOM in combination
could be an alternative tool for automatically monitoring toxic substances in environment.
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