
 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 438–446

This paper is part of the Proceedings of the International Conference on Big Data
(Big Data 2016)
www.witconferences.com

© 2016 WIT Press, www.witpress.com
ISSN: 1755-7437 (paper format), ISSN: 1755-7445 (online), http://www.witpress.com/journals
DOI: 10.2495/DNE-V11-N3-438-446

SHOULD EU LAND USE AND LAND COVER DATA BE
MANAGED WITH A NOSQL DOCUMENT STORE?

J.T. NAVARRO-CARRIÓN1, B. ZARAGOZÍ1, A. RAMÓN-MORTE1 & N. VALCÁRCEL-SANZ2

1Instituto Interuniversitario de Geografía, Universidad de Alicante, Spain.
2Geodesy and Cartography Department, National Geographic Institute of Spain.

ABSTRACT
Land cover (LC) is a scientific landscape classification based on physical properties of earth materials. This
information is usually retrieved through remote sensing techniques (e.g. forest cover, urban, clay content,
among others). In contrast, Land use (LU) is defined from an anthropocentric point of view. It describes how
a specific area is used (e.g. it is usual to indicate whether a territory supports an intensive, extensive use or it
is unused). Both geospatial layers are essential inputs in many socio-economic and environmental studies. The
INSPIRE directive provides technical data specifications for harmonization and sharing of voluminous LU/
LC datasets across all countries of the EU. The INSPIRE initiative proposes Object-Oriented Modelling as a
data modelling methodology. However, the most used Geographic Information Systems (GIS) are built upon
relational databases. This may jeopardize LU/LC data usability, since GIS practitioners will eventually face the
object-relational impedance mismatch. In this paper, the authors introduce the SIOSE database (Spanish Land
Cover and Land Use Information System), which was the first implementation of an object-oriented land cover
and Land-use datamodel, in line with the recommendation of the INSPIRE Directive, separating both themes.
SIOSE data can be downloaded as relational database files, where information describing each single LU/LC
object is divided among several related tables, so database queries can be complex and time consuming. The
authors show these technical complexities through a computational experience, comparing SQL and NoSQL
databases for querying spatial data downloaded from SIOSE. Finally, the authors conclude that NoSQL geoda-
tabases deserve to be further explored because they could scale for LU/LC data, both horizontally and vertically,
better than relational geodatabases, improving usability and making the most of the EU harmonization efforts.
Keywords: Land Use, Land Cover, document store, SIOSE, geodatabase, PostgreSQL, jsonb

1 LAND USE AND LAND COVER DATABASES IN THE EU
Land is a limited resource and its mismanagement is one of the main drivers of global change, with
significant effects on ecosystem functions, goods and services [1]. There are complex environmental
problems such as the over- exploitation of natural resources, biodiversity loss or climate change that
require a long-term management perspective of natural resources. Many studies agree that these
problems can be aggravated by land-use changes, so it is mandatory to monitor and apply long-term
management policies at different scales [2].

Land use (LU) and land cover (LC) information at national and regional level has been historically
recorded in many EU Member States because of their environmental and territorial management’s
needs and requirements. In addition to Corine Land Cover (CLC) 1990 databases, many EU coun-
tries have been producing LC databases to manage and satisfy their requirements on environmental,
agricultural, forest and land planning issues. As a consequence, there are several regional and
national LU/LC inventories with very different data collection methods, scales, nomenclatures,
 Minimum Mapping Units, and different production and update intervals [2].

 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 439

The need for better harmonization between national and European data sets and the intention of
avoiding redundant data production, has led many of these countries to use their national data to
derive European scale data sets, such as CLC or LUCAS, following a ‘bottom-up’ approach [2].
Simultaneously, the information flow generated by these national developments needs to be inte-
grated with other European ‘top-down’ land monitoring activities, such as Copernicus, which is the
European Programme for the establishment of a European capacity for Earth Observation [3].

The EAGLE group was set up by the members of the Environmental Information and Observation
Network (EIONET) on land cover in response to the growing need to discuss technical solutions for
a better integration and harmonization of national mapping activities with European land monitoring
initiatives. The objective of the working group is to elaborate a conceptual solution for land monitor-
ing built on national data sources combined with pan-European information layers [3]. The EAGLE
data model uses an Object-Oriented Data Modelling (OODM) approach, which takes into account
existing standards or code lists, such as CLC, LUCAS, EUNIS as well as INSPIRE (2007/2/EC) data
specifications and ISO standard 19144-2 (LCML-Land Cover Meta Language). Currently, the devel-
opment of EAGLE concept and methodology is being funded by the European Environmental
Agency under the framework of Copernicus program.

The National Geographic Institute of Spain (IGN), a member of the EAGLE group, created the
Land Cover and Use Information System of Spain (SIOSE) as part of the National Land Monitoring
Plan, which aims to achieve a multidisciplinary Spatial Data Infrastructure, periodically updated, for
the Spanish national and regional administrations. The SIOSE database conforms with the INSPIRE
data specifications and has been designed as an OODM, similar to the one proposed by the EAGLE
group, ensuring backward compatibility and comparability with pre-existing databases like CLC90,
CLC00, Murbandy/Moland, UN FAO LCCS, among others. However, in practice, the OODM is

Figure 1: LU/LC example of object-oriented classification in JSON.

440 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016)

adapted and implemented into relational or object-relational database management systems with
spatial capabilities, and database managers have to deal with incompatibilities at the conceptual
level. This is a case of the object-relational impedance mismatch, and has been clearly identified in
literature as a problem of data structure due to paradigm differences [4]. An example of LU/LC clas-
sification of a single parcel is shown in Fig. 1. The amount of semi-structured information to be
stored for each LU/LC polygon adds some difficulties for managing the SIOSE LU/LC information
through well-known GIS or relational geodatabases, so other technological alternatives might be
explored. Nowadays, the SIOSE database is accessed via standard web mapping services, GIS file
downloads and, in some cases, it is also distributed as serialized XML.

1.1 Research goals

The computational experience presented in this paper is considered a preliminary work. We basically
conducted a peer-to-peer query performance test where LU/LC queries were run against the SIOSE
relational model and compared with their translations run against a document-oriented derivative.
Every query included a bounding box search clause and run iteratively using grids with varying cell
size (Table 1). Both models were implemented in twin PostgreSQL/PostGIS instances. By constraining
the experiment to a common DBMS we expected: (i) to get comparable response time and throughput
figures; (ii) to obtain results not distorted by different implementations of spatial access methods; (iii)
to get hints on how LU/LC hierarchy structure influences query performance; (iv) to ascertain query
qualification categories for which the document-oriented approach should be considered.

2 EXPERIMENTAL SETUP
In order to initially answer the research question asked in the title of this paper, we chose to compare
spatial query performance using different data type storage options for LU/LC observations within
the same environment rather than measuring differences in performance among several database
engines. PostgreSQL was selected to accomplish this task since it (i) provides an extensible type

Table 1: Database tables used for benchmark.

Type Tables #Rows Total Size External Size

Relational +
Lookup

siose_values 10,435,032 3,160 MB 1,522 MB

siose_polygons 2,477,593 6,456 MB 1,948 MB
siose_coverages 116 48 kB 40 kB
siose_attributes 26 40 kB 32 kB
TOTAL 12,912,625 9,616 MB 3,470 MB

Document store docstore_jsonb 2,477,593 8,066 MB 2,615 MB
Grids spain_grid_10k 46,088 7,568 kB 40 kB

spain_grid_25k 7,646 1,296 kB 40 kB
spain_grid_50k 2,027 376 kB 40 kB
spainvgrid_100k 568 136 kB 40 kB
spain_grid_200k 171 72 kB 40 kB
spain_grid_500k 42 48 kB 40 kB
spain_grid_1m 15 48 kB 40 kB

 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 441

system, (ii) implements the OGC’s Simple Feature for SQL specification using the PostGIS exten-
sion – providing types, functions and access methods for geographic data –, (iii) allows for a formal
representation of SIOSE’s relational model, (iv) provides a binary JSON data type and operators to
manage document-oriented models [5] and (v) generates query plans using a common relational
query processor. Therefore, SQL spatial queries against relational and document-oriented models
can be consistently compared to each other in terms of processing cost.

2.1 Data loading

As of this writing, there are two SIOSE datasets publicly available for download, corresponding to
the compilation campaigns of 2005 and 2011. The SIOSE 2005 dataset was selected since, at the
time of testing, it was the only one that covered the whole country. This dataset collects more than
10.4 million soil occupation observations for roughly 2.5 million polygon geometries. SIOSE data
were obtained from the Spanish National Center for Geographical Information download site. Data
for a particular year is organized as a series of ZIP archives. Each archive covers an administrative
region or subregion and contains an ESRI Shapefile with polygon geometries and a Microsoft Jet
MDB file with LU/LC observations. As to raw data preparation, a set of bash scripts (https://github.
com/labgeo/siose2postgis) were written to automate the initial process of loading the SIOSE archives
into a PostgreSQL/PostGIS database. This job was accomplished on a commodity computer running
Ubuntu 14.04 and one PostgreSQL/PostGIS Docker container. The resulting database was dumped
into a plain SQL script file using the common pg_dump utility. For the binary JSON model test,
several scripts were prepared to transform the whole relational database into a set of JSON documents
(Fig. 1). These JSON documents are created as a direct translation of the XML files prepared by the
IGN for very particular purposes.

2.2 Use case

For this computational experiment, our intent was measuring workloads across the whole SIOSE
dataset in a similar fashion to the use case of a web map monitoring session where, in order to reload
its data, a reactive dashboard listens to range query events on a map view. This use case is in line with
the concept of the map browsing macro benchmark scenario within the Jackpine spatial database
benchmark methodology [6], which consists of a series of queries fetching geometries inside bound-
ing boxes. Covering the study area in full was necessary so that the benchmark is comprehensive in
terms of reflecting LU/LC regional variability. In order to meet this requirement, a tessellation func-
tion was written to build graticule macro scenarios overlapping Spain’s mainland and islands at seven
different scales or levels of detail, ranging from 1:10,000 to 1:1,000,000. Finally, a set of six bounding
box search queries were prepared with three categories of qualifiers, namely polygon selection, aggre-
gation and reclassifying conditions (Table 2). Grid cells played as arrays of predefined bounding
boxes, each cell being visited three times per query plus one initial warming up iteration.

2.3 Test environment

The PostgreSQL query planner itself was used as the means of benchmarking. Query planners or
optimisers have been formally defined as the component of the relational query processor which is
in charge of mapping the set of logical operators in a DML statement syntax tree to an optimal or
suboptimal graph of physical operators driving data flow [7, 8]. In the case of PostgreSQL, the inter-
nals of these diagrams, referred to as query plans, have been explained in great detail by source code

442 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016)

reviewers [8] and are the primary resource for query performance monitoring. To sum up, a query
plan is generated by issuing the EXPLAIN command, typically over a SELECT statement, and
depicted as a binary tree of access paths. Each node in the tree represents an access method for scan-
ning a relation (sequentially or by index) or an algorithm for joining a pair of relations. Nodes also
have an associate processing cost. Queries with a low number of joins are optimised using an exhaus-
tive search strategy, so the resulting query plans shall be considered optimal provided that statistical
information involved with processing cost estimates is regularly fed to the system catalogue using
the VACUUM and ANALYZE maintenance commands. As to this computational experiment, the
query plans output by the EXPLAIN ANALYZE command were recorded for each query (6), grid
cell (56,557) and iteration (4). We ultimately focused on actual execution times in order to assess
query performance, although there are other metrics, such as the number of nodes, the number of
rows processed or the accumulated processing cost carried over each node, which are also relevant
for benchmarking and may well be used to consistently compare between query plans originated
within each data model (relational and JSONB) and whose result set is equivalent.

2.4 Server instance replication and database deployment

Each PostgreSQL server instance was executed in isolation using containers running on Docker
Engine 1.9. As highlighted in an analysis of the ‘DevOps’ approach to computational experiments
replication, Boettiger [9] demonstrates how Docker container technology fulfills the requirements of
software dependency resolution, precise documentation and portability by means of simple script-
ing, composition and light-weight image binaries sharing the host machine kernel. In order to ensure
reproducibility of the computational environment used for the tasks described in this paper, we are
providing a Dockerfile (https://github.com/labgeo/postgresql-9.5-postgis-2.1) which allows creating
a PostgreSQL 9.5 image, including the PostGIS 2.1 extension for geospatial data storage.

A deployment utility (https://github.com/labgeo/deploy-db) was developed to automate launching
database instances on the server. This bash script can be executed locally to run a PostgreSQL

Table 2: Bounding box search benchmark queries.

LU/LC Condition Query ID Description

cover equals coniferous Select polygons with coniferous cover.

cover equals AND area
greater than

large_coniferous Select polygons with coniferous coverage greater
than 1 Ha.

attribute equals OR
attribute equals

reforested Select polygons with forest coverage originating
from plantation or agricultural abandonment.

cover equals AND
parent(cover) equals

scattered_urb Select polygons with scattered urbanisation
coverage.

IF cover equals THEN
sum(area)

area_coniferous Sum all areas of coniferous plantations.

IF cover equals THEN
reclass(area percent-
age)

reclass Reclassify all polygons into 4 density class
 categories based on conifer percentage (0%–25%,
25%–50%, 50%–75% and 75%–100%). Discard
polygons with no coniferous cover.

 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 443

Docker container, create a PostGIS database and subsequently restore the complete SIOSE dataset
using the above mentioned SQL script file. Two database instances were generated so that we could
effectively rely on isolated computational environments to compare query performance between the
relational and the document-oriented models.

2.5 Schema setup

Several set-up scripts (https://github.com/labgeo/pg_siose_bench) were developed and documented.
The LU/LC observations table stores adjacency lists to model the coverage hierarchy of each polygon,
but the parent fields contain the full path of ancestor identifiers as comma-separated strings instead of
the direct ancestor’s identifier. The one to many relationship between a coverage and its attributes is
also stored as a list of strings. During pre-processing, these lists were converted to one-dimensional
arrays, thus rendering a 1NF compliant model whose data is accessible through Generalized Inverted
Indexes (GIN) and array operators. Additional pre-processing scripts were used to rename identifiers,
remove unneeded fields and build grid scenarios. As to indexing, only general indexes were built:
BTree on scalar fields, GIN on array and binary JSON fields and Generalized Search Tree (GiST) on
polygon geometry. No multi-column or functional indexes were created. This preserves flexibility
since the choice of any particular index is always handed over to the PostgreSQL optimiser when
processing WHERE clauses having multiple conditions. In summary, starting from two SIOSE raw
geodatabase instances, the set-up process resulted in (i) a normalised geodatabase with a polygons
table and an LU/LC observations table (relational model) and (ii) a second instance with a single
 polygons table where LU/LC observations for each polygon are stored as binary JSON values (docu-
ment-oriented model). As part of the schema set-up, all LU/LC queries were defined as prepared
statements and encapsulated, along with the benchmark log commands, within support functions.

3 BENCHMARK RESULTS
Firstly, the comprehensive series of scripts that were developed make themselves a first relevant
result, since they guarantee the reproduction of the research by others in an automated fashion.

As to final test results, benchmarks were carried out on a Debian 8 server with kernel 3.16.0-4-
amd64, Intel Xeon E5-2630 v2 CPU, 512 GiB SSD and 62 GiB RAM. Given a 4 iterations per
grid cell, a total of 226,228 iterations per bounding box search query were run on each Post-
greSQL server instance. The whole query stack took 3.58 hours to complete on the relational
model. Completion time in the document-oriented model was 2.91 hours that is roughly a 19%
faster. Benchmarking implied recording every single iteration query plan in a log table, which was
in turn indexed to efficiently get measurements on response and throughput, namely averages by
execution time and, as a byproduct, polygons per millisecond. Table 1 shows the database tables
used in this computational experience, with their cardinality, total file size and external file size
(kB or MB). Approximately, ‘external size’ corresponds the memory occupied by indexes, while
‘total size’ is equal to the sum of the data size and the ‘external size’. There are three types of
tables: (i) tables storing regular grids at 7 different scales where each record corresponds to a cell
grid, (ii) tables containing the SIOSE relational database, optimised for PostgreSQL as explained
in Subsection 2.5. There is one table (siose_polygons) storing the SIOSE 2005 geometries, a sec-
ond table (siose_values) storing the LU/LC values associated with those polygons and two lookup
tables containing LU/LC descriptions for the LU/LC codes in siose_values. (iii) Finally, docstore_
jsonb stores the complete SIOSE database in one single table, very similar to siose_polygons,
but with an additional binary JSON column storing the LU/LC model for each polygon (see
 Section 1). It can be seen that the relational database uses 5,2 times more rows than the document

444 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016)

store for the same information. It is also noteworthy that the relational model spends more disk
space in both, tables and indexes.

Response time charts and throughput boxplots were composed using query plan execution times
and number of polygons processed per millisecond, respectively. Charted values refer to average per
query and grid. Comparative line charts in Fig. 2 show that queries by cover (query identifiers
‘ coniferous’ and ‘scattered_urb’) render better response times on the document-oriented model. In
fact, these queries scored maximum throughput and the greatest performance gains with regard to
their siblings in the relational model as shown in Fig. 3. The reclassification query performs better
on the document-oriented model, particularly at the 1:100,000 scale, where it runs twice as fast.
However, response time gains tend to shrink at lower levels of detail. Differences in response and
throughput are less significant in the aggregation (query id ‘area_coniferous’) and LU/LC attribute
(query id ‘reforested’) queries. On the other hand, response times of the query by cover and LU/LC
(query id ‘large_coniferous’) increase progressively at lower levels of detail on the document-store
model, so much that overall performance is clearly better on the relational model.

4 DISCUSSION
Considering the exploratory nature of this experiment and the observed results, the answer to the
research question is that there are common workflows for which a document-oriented model should
be seriously taken into consideration. Massive polygon retrievals based on land coverage presence
or absence seems an optimal use case. Reclassification operations may also benefit from a binary

Figure 2: Binary JSON vs relational query response times.

 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 445

JSON implementation, although real applications such as those mentioned in Section 1 should be
thoroughly tested (e.g. derive CLC following a ‘bottom-up approach’). In contrast, inequality
expressions on LU/LC numeric attribute values cannot make use of the GIN index on the binary
JSON field. As seen in Section 3, this problem gets particularly exacerbated in the query by cover
and area (query id ‘large_coniferous’), which performs progressively slower at smaller scales
(more polygons to process per grid cell) on the binary JSON model. The throughput of this query on
the document-oriented model is remarkably poor considering its relative simplicity. Drastically
improving performance on inequality expression evaluation requires an alternative approach for the
document-oriented model, which most probably involves resorting to functional BTree indexes.
Another issue that emerged during the devise of the experiment was the somewhat convoluted syn-
tax of the JSON queries. This is a consequence of the deeply nested structure of the LU/LC JSON
documents and the lack of native DOM operators. Different flattening strategies of the original
JSON schema should be investigated in order to assess on tackling this issue and measure influence
in performance. In the end, this computational experiment serves as a starting point to verify that,
while the relational model is probably more reliable for OLTP, building LU/LC data marts upon

Figure 3: Binary JSON vs. relational query throughput

446 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016)

binary JSON may boost Big Data applications not feasible otherwise. Finally, the computational
experiment presented in this paper opens up research in scopes such as index optimisation and effi-
cient search inside JSON documents.

REFERENCES
[1] Roces-Díaz, J.V., Díaz-Varela, E.R. & Álvarez-Álvarez, P., Analysis of spatial scales for eco-

system services: application of the lacunarity concept at landscape level in Galicia (NW Spain).
Ecological Indicators, 36, pp. 495–507, 2014.
http://dx.doi.org/10.1016/j.ecolind.2013.09.010

[2] Manakos, I. & Braun, M., Land Use and Land Cover Mapping in Europe, Springer London,
18, p. 411, 2014.

[3] Arnold, S., Kosztra, B., Banko, G., Smith, G., Hazeu, G. & Bock, M., The eagle concept a vi-
sion of a future European land monitoring framework. EARSeL Symposium Proceedings 2013,
“Towards Horizon 2020”, 2013.

[4] Ireland, C., Bowers, D., Newton, M. & Waugh, K., A classification of object-relational imped-
ance mismatch. Proceedings – 2009 1st International Conference on Advances in Databases,
Knowledge, and Data Applications, DBKDA, pp. 36–43, 2009.
http://dx.doi.org/10.1109/dbkda.2009.11

[5] Bartunov, O. & Sigaev, T., Binary storage for nested data structures and application to hstore
data type. PostgreSQL Conference Europe 2013 Tals, 2013. Available at: http://www.sai.msu.
su/~megera/postgres/talks/hstore-dublin-2013.pdf.

[6] Ray, S., Simion, B. & Demke Brown, A., Jackpine: a benchmark to evaluate spatial database
performance. Proceedings International Conference on Data Engineering, pp. 1139–1150,
2011.
http://dx.doi.org/10.1109/icde.2011.5767929

[7] Hellerstein, J.M., Stonebraker, M. & Hamilton, J., Architecture of a database system. Founda-
tions and Trends in Databases, 1(2), pp. 141–259, 2007.
http://dx.doi.org/10.1561/1900000002

[8] Wang, J., Li, J. & Butler, G., Implementing the PostgreSQL query optimizer within the OPT++
framework. Proceedings Asia-Pacific Software Engineering Conference, APSEC, pp. 262–272,
2003.

[9] Boettiger, C., An introduction to Docker for reproducible research. ACM SIGOPS Operating
Systems Review, 49(1), pp. 71–79, 2015.
http://dx.doi.org/10.1145/2723872.2723882

