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ABSTRACT
Water quality brings to the ground the discussion on water utilization once the consumption, of degraded water, 
is not possible or safe. On the other hand, the assessment of the water quality in a reservoir is constrained due 
to geographic considerations, the number of parameters to be studied, and the huge fi nancial resources needed 
to get the necessary data. To this picture it should be added the latency times between the sampling moment 
and the instant that portrait the results of the laboratory analyses. However, new approaches to problem solving, 
namely those borrowed from the Artifi cial Intelligence arena have proven their ability and applicability in terms 
of simulation and modeling of the physical phenomena. Indeed, Artifi cial Neural Networks (ANNs) capture 
the embedded spatial and unsteady behavior in the investigated problem, using its architecture and nonlinearity 
nature, when compared with the other classical modeling techniques. This work describes the training, valida-
tion, and application of ANNs models for computing the oxidability and total suspended solids (TSS) levels 
in the Monte Novo reservoir, in Portugal, over a period of 15 years. Different network structures have been 
elaborated and evaluated. The performance of the ANNs models was assessed through the coeffi cient of deter-
mination (R2), mean absolute deviation, mean squared error, and bias computed from the measured and model 
calculated values of the dependent variables. Goodness of the model fi t to the data was also evaluated through 
the relationship between the errors and model computed values of oxidability and TSS. The ANNs selected to 
predict the oxidability from pH, conductivity, dissolved oxygen (DO), water temperature, and volume of water 
stored in reservoir has a 4-11-5-1 topology, while the network selected to predict the TSS has a 5-6-5-1 topol-
ogy. A good match between the observed and predicted values was observed with the R2 values varying in the 
range 0.995–0.998 for the training set, and 0.994–0.996 for the test set.
Keywords: Artifi cial Neural Networks, water quality, water reservoirs.

1 INTRODUCTION
Water quality is a term usually used to express the suitability of water to sustain various uses or 
processes. Quantity and quality demands from different users will not always fi t together, as the 
activities of one user may restrict the activities of others, either by demanding water of a quality 
outside the range required by the other users or by lowering the water quality when using it. Efforts 
to improve or maintain a certain water quality often requires a middle ground between the quality 
and quantity demands of different users. Water quality management usually involves the monitoring 
of a series of key pollutants that serve as indicators of its acceptability for a specifi c use. The quality 
of water may be described in terms of the concentration and state (dissolved or particulate) of some 
or all of the organic and inorganic material present in it, together with certain water physical charac-
teristics. It is determined by in situ measurements and by examination of water samples on site or in 
the laboratory. Indeed, this is a very restricted approach due to the distances, the number of param-
eters to be considered, and the fi nancial resources spent to get their values. Moreover, under this 
context, the latency times between the sampling moment and the instant that points the conclusion 
of the laboratory analyses should be added. Due to these constraints, the development of  computational 
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models based on Artifi cial Intelligence tools and techniques for problem solving, in conjunction with 
the analysis and progresses in Decision Support Systems [1], fi ts as an alternative for the quality 
management of water resources.

The presence of solids and organic matter in water may affect water quality adversely in a number 
of different ways and may jeopardize its use for different purposes, such as the production of water 
for public supply. Although parametric statistical and deterministic models have been the traditional 
approaches for modeling water quality, these require vast information on various hydrological sub-
processes to achieve the expected results. However, since a large number of factors affecting the 
water quality have a complicated nonlinear relation with the variables, traditional data processing 
methods are no longer good enough for solving the problem [2]. In recent years, some Artifi cial 
Intelligence based tools, namely Artifi cial Neural Networks (ANNs) and Decision Trees (DTs) have 
been applied for water quality assessment [3–6]. However, the prediction of TSS and oxidability is 
a complex and highly nonlinear problem for which, to our knowledge, no methods have been 
reported in the literature.

The aim of the current study was to use Artifi cial Intelligence-based tools, particularly ANNs to 
address this problem. ANNs can learn from examples, are fault tolerant in the sense that they can 
handle noisy and incomplete data, can deal with nonlinear problems and, once trained, can perform 
prediction and generalization [7,8]. This study took place in Monte Novo reservoir, which is located 
20 km southwest of the Portuguese city of Évora, considered by UNESCO as World Heritage. The 
raw water of the Monte Novo reservoir is used to produce drinking water, supplying 70,000 inhabit-
ants currently.

2 MATERIALS AND METHODS
The water samples used for the development of the models were collected during a given time 
period, from August 1995 to December 2010. The parameters analyzed were pH, conductivity, dis-
solved oxygen (DO), water temperature, volume of water stored in reservoir, oxidability, and total 
suspended solids (TSS).

2.1 Sample collection and preservation

Sample collection and sample preservation makes use of procedures described in Standard Methods 
for the Examination of Water and Wastewater (SMEWW) [9].

For pH, conductivity, DO and water temperature, the samples were collected in wide-mouth poly-
ethylene bottles of 50 mL and analyzed immediately; for oxidability analysis, the samples were 
collected in polyethylene bottles of 100 mL, stored in dark, and kept refrigerated; fi nally, for TSS 
analysis, the samples were collected in polyethylene bottles of 100 mL and kept refrigerated.

2.2 Analytical procedures

The determination of pH was executed according to SMEWW 4500-H+ B using a Crison GLP 22 
pH meter equipped with a Crisolyt 50 14 electrode. The conductivity was evaluated according to the 
Portuguese version of the European Standard 27888:1996 using a WTW InoLab cond 720 conduc-
tivity meter. The water temperature was determined according to SMEWW 2550 B. Measurements 
were carried out in fi eld using SLW N16B Glas (−10 +50°C, 0,1°C) thermometer. The DO was 
determined in fi eld with a Crison OXI 45 oxymeter equipped with a DurOx 325 electrode according 
to SMEWW 4500-O B. The TSS were evaluated according to SMEWW 2540 D. Finally, the 
oxidability was determined according to the Portuguese Standard 731:1969.
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2.3 Artifi cial Neural Networks

The ANNs are computational tools that attempt to simulate the architecture and internal operational 
features of the human brain and nervous system. In this study, the most common neural network 
type, the multilayer perceptron, was adopted. This type of networks are formed by three or more 
layers of artifi cial neurons or nodes, the basic computing units, which include an input layer, an 
output layer, and a number of hidden layers with a certain number of active neurons connected by 
feed-forward links, to which are associated modifi able weights. In addition, there is also a bias, 
which are connected to neurons in the hidden and output layers. The number of nodes in the input 
layer denotes the number of independent variables and the number of nodes in the output layer 
stands for the number of dependent variables [8].

Although it has been proven that a network with one hidden layer can approximate any continu-
ous function, given suffi cient degrees of freedom [10], other studies have shown that, in practice, 
many functions are diffi cult to approximate with one hidden layer [11,12]. Indeed, there are no 
clear rules as to the ‘best’ number of hidden layer units. Network design is a trial-and-error process 
and may affect the accuracy of the resulting trained network. A number of automated techniques 
have been proposed to search for a ‘good’ network structure. These typically use a hill-climbing 
approach that starts with an initial structure that is selectively modifi ed to improve performance, 
that is, to minimize an error metric [13,14]. In the present work, the error metric used was the mean 
squared error (MSE).

In the training phase, the back-propagation algorithm (BP) [15] was applied. This is the most 
widely used training algorithm for multilayered perceptron and basically involves two phases. One 
is the forward phase where the information is propagated from the input to the output layer. The 
second is the backward phase where an error, defi ned as the discrepancy between the observed 
value and the desired nominal value in the output layer, is propagated backwards to adjust the 
weightings and bias values. In the forward phase, the weighted sum of input components, uj, is 
calculated as

 1

n

j ij i j
i

u w x bias
=

= +∑
 

(1)

where wij denotes the weight between the jth neuron and the ith neuron in the preceding layer, xi 
denotes the output of the ith neuron in the preceding layer, and biasj denote the weight between the 
jth neuron and the bias neuron in the preceding layer.

The output of the jth neuron in any layer, yj, is calculated as

 
( )j jy f u=

 
(2)

where f denotes the activation function. In all experiments the sigmoid activation function was 
used as given below:
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The BP algorithm is controlled by two parameters, the momentum coeffi cient and the learning 
rate, ranging between 0 and 1. The momentum coeffi cient is used in updating weights stage and 
tends to keep the weight changes in a consistent direction. Learning rate controls how much the 
weights are adjusted at each update. The Waikato Environment for Knowledge Analysis (WEKA) 
was used to implement ANNs, keeping the default software parameters [16].
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To ensure statistical signifi cance of the attained results, 20 runs were applied in all tests. In each 
simulation, the available data was randomly divided into three mutually exclusive partitions: the 
training set, with 60% of the available data, used during the modeling phase; the test set, with 25% 
of the examples, used after training to evaluate the model performance; and the validation set, with 
the remaining 15% of data to validate the models [17]. To improve the performance of the learning 
algorithm and avoid the overvaluation of the attributes with larger intervals at the expense of the 
attributes with smaller ones, the data was normalized to the interval [0, 1], using the equation 
depicted below [14]:

 min

min

max

X X
X

X X
−

=
−  

(4)

where X  denotes the normalized value, X denotes the attribute value and Xmin and Xmax denote, 
respectively, the minimum and the maximum values for the attribute.

3 RESULTS AND DISCUSSION

3.1 Database

The data used in this study covered the period from August 1995 to December 2010, containing 
a total of 184 records with 7 fi elds. The fi elds were pH, conductivity, DO, water temperature and 
volume of water stored in reservoir, oxidability, and TSS. Table 1 shows the statistical characteriza-
tion of the fi elds included in the database.

Excluding pH, Table 1 shows large dispersion of the data with high coeffi cient of variation, rang-
ing from 22.5 to 74.9%. The coeffi cient of variation (CV) is a measure of dispersion of data and it is 
calculated as (standard deviation/mean) × 100. Such variability may be attributed to the large geo-
graphical variations in climate and seasonal infl uences in the region object of study. The local climate 
is Mediterranean-type (Csa according to Köppen), characterized by winter-wet and summer-dry 
pattern. Mean annual rainfall is 665 mm, most of which falling from autumn to early spring (90%) 
in < 75 days of rain per year [18]. Mean annual air temperature is about 15.4°C, ranging from 8.6°C 
in January to 23.1°C in August. Air relative humidity is about 70%. The dry period is up to 5 months. 
The pH shows the CV lowest variation, and it may be due to the buffering capacity of the reservoir. 
Nevertheless, these results are in agreement with results presented by other authors for similar 
 systems [19,20].

Table 1: Statistical characterization of the numerical variables used in the study.

Variable Minimum Maximum Mean
Standard 
deviation

Coeffi cient of 
variation (%)

pH (Sørensen scale) 7.2 9.1 7.9 0.5 6.3
Conductivity (µS/cm) 117 667 287 119 41.5
Water temperature (°C) 7.6 26.9 17.1 5.6 32.7
DO (% sat) 43.3 170.9 87.1 22.8 26.2
Volume stored (dam3) 6900 15277 12668 2847 22.5
TSS (mg/dm3) 5.0 116.9 34.7 26.0 74.9
Oxidability (mg/dm3) 0.3 16.0 7.1 3.8 53.5
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3.2 ANNs models

To obtain the best prediction of the output parameters (oxidability and TSS), different network struc-
tures and architectures were elaborated and evaluated. The optimum number of hidden layers and 
the optimum number of nodes in each of these was found through a process of trial and error. Com-
mon tools to compare the performances of regression models are the mean absolute deviation 
(MAD), and the MSE. According to Torgo [21], these tools, when applied to the evaluation of regres-
sion models, serve different purposes. If the goal is a model with good fi t for most cases even though 
allowing some higher deviations, MAD should be minimized. Conversely, if the objective is not 
committing large deviations, although frequent small errors can be allowed, MSE should be mini-
mized, once this measure refl ects the large deviations in the fi nal result. These two measures of 
goodness-of-fi t are related to the average prediction error. Nevertheless, they do not provide any 
information on the nature of the errors. According to Chenard and Caissie [22], the average of all 
individual errors, named bias, can be calculated indicating whether the model overestimates or 
underestimates the output variables. Table 2 presents the values of MAD, MSE and bias for some of 
the topologies tested.

Concerning the prediction of oxidability, Table 2 shows that 4-11-5-1 ANN minimizes MAD and 
MSE and exhibits a bias value closer to zero for the training set and for the test set. Regarding the 
prediction of TSS, Table 2 shows that 5-6-5-1 network minimizes MAD and MSE and exhibits a bias 
value closer to zero for both data sets. The architecture of the best ANN for modeling the oxidability 

Table 2: MAD, MSE, and bias for some ANN topologies tested.

ANN 
topology

MAD* MSE* Bias*

Training set Test set Training set Test set Training set Test set

O
xi

da
bi

lit
y

4-6-3-1 1.572 1.741 6.901 6.230 −0.235 −0.571
4-7-5-1 1.794 1.821 8.221 8.615 0.374 0.295
4-9-4-1 0.829 0.813 0.375 0.397 −0.051 0.065
4-10-6-1 1.122 1.099 2.253 2.654 −0.381 0.222
4-11-5-1 0.209 0.253 0.060 0.073 −0.004 0.028
4-11-7-1 0.841 1.036 1.113 1.541 −0.658 0.825
4-12-10-1 1.222 1.632 2.478 2.616 0.845 −0.755

T
SS

5-4-1-1 2.033 2.211 4.233 5.101 −0.326 0.445
5-5-3-1 1.154 1.504 3.123 3.621 0.472 0.581
5-6-4-1 0.742 0.971 1.026 1.741 −0.102 −0.233
5-6-5-1 0.339 0.401 0.175 0.257 0.002 −0.007
5-7-2-1 0.392 0.471 0.309 0.724 −0.013 0.075
5-8-5-1 0.542 0.847 0.846 0.973 0.056 −0.181
5-10-3-1 2.045 2.256 3.969 3.924 0.418 −0.473

* 
1MAD ;

N
i ii Y Y
N

= ′ −∑
=

 

2
1( )

MSE ;
N
i i iY Y

N
=∑ ′−

=
 

1( )
bias ;

N
i i iY Y
N

=∑ ′−
=  Y denotes an experimental 

value, Y¢ stands for a predicted value, and N indicates the number of observations.
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in Monte Novo reservoir is shown in Fig. 1a. This model consists in an input layer with 4 nodes, 
2 hidden layers with 11 and 5 nodes, and 1 node output layer. Figure 1b shows the best network 
 architecture for modeling TSS that consists of an input layer with fi ve nodes, two hidden layers with 
six and fi ve nodes, and one node output layer.

Figure 2a,b shows the plots between experimental and predicted values of oxidability and TSS for 
training and test sets. The values of the coeffi cient of determination (p < 0.001) for the training and 
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Figure 2: Plot of predicted response by ANN models for oxidability and for TSS versus experimental 
values for training (a) and test (b) sets.
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test sets were 0.995 and 0.994 for the ANN model to predict oxidability, and 0.998 and 0.996 for the 
ANN model to predict the TSS. The agreement between the experimental and predicted values for 
both parameters of water quality, R2, MAD, and MSE (Table 2) seems to suggest a good-fi t of both 
models to the data set.

In addition to what was stated above, Fig. 3 shows the plots between errors and predicted values 
of oxidability and TSS for training and test sets. The observed relationship between errors and pre-
dicted values for the two water quality parameters for training and test sets shows complete 
independence and random distribution. Indeed, the determination coeffi cients are negligibly small 
(0.001 and 0.007 for training set and 0.007 and 0.006 for test set, respectively, for oxidability and 
TSS). Figure 3 shows that the points are well distributed on both sides of the horizontal line of zero 
ordinate, corresponding to the correct prediction. Plots of the errors versus predicted values can be 
more informative regarding model fi tting to a data set. If the errors appear to behave randomly, it 
suggests that the model fi ts the data quite well. On the other hand, if nonrandom distribution is evi-
dent in the errors, the model does not fi t the data satisfactorily [2,23].

3.3 Validation of the ANN models

To validate the models, a set of independent data was used and computed the values of oxidability 
and TSS. Figure 4 shows the plots between experimental and predicted values of oxidability and 
TSS for the validation set. The coeffi cient of determination (R2), MAD, MSE, and bias were 

Figure 3:  Plot of the errors versus predicted response by ANN models for oxidability and TSS for 
training (•) and test ( ) sets.
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values for the validation set.
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 computed for both models and are presented in Table 3. The obtained values are similar to those 
presented earlier, for both models, for training and test sets. Furthermore, Fig. 5 shows the plots 
between errors and predicted values of oxidability and TSS for the validation test. The relationships 
observed for both models show complete independence, random distribution and are well distributed 
on both sides of the line of correct prediction. These results demonstrate that both models performed 
well for an independent set of data and, therefore, do not show overfi tting.

3.4 Sensitivity analysis of the ANN models

Sensitivity analysis is the process of defi ning model output sensitivity to changes in its input varia-
bles. Typically, the efforts in data acquisition will be focused on the more relevant variables for the 
model accuracy and dropping or ignoring those that matter least. Sensitivity analysis is a simple 
procedure that is applied after the modeling phase and analyzes the model responses when the inputs 
are changed. In this work the sensitivity according variance [24] was used to compute the relative 
importance of the input variables for selected models. The results are presented in Fig. 6 and reveal 
that the most informative variable for the model to predict oxidability is conductivity, followed by 
water temperature and pH, suggesting their direct infl uence on the oxidability level in the water. 
Regarding the model to forecast the TSS, Fig. 6 suggests that all input variables contribute signifi -
cantly to the network, although DO and pH provide a relatively higher contribution.

4 CONCLUSIONS
In this study, two models based on ANNs were developed to predict the oxidability and the TSS in 
water. The models were trained, tested, and validated using monthly data measured over a period of 
15 years. The feed-forward network with the BP learning algorithm was employed. The selected 

Table 3:  Comparison between measured and computed values by the selected ANN models for the 
validation set.

ANN model Output variable R2 MAD MSE Bias

4-11-5-1 Oxidability 0.992 0.284 0. 097 0.097
5-6-5-1 TSS 0.994 0.478 0.300 −0.068
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Figure 5:  Plot of the errors versus predicted response by ANN models for oxidability and TSS 
for the validation sets.
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models performed well in prediction of the output variables based on pH, conductivity, water 
 temperature, DO, and volume of water stored in the reservoir. These encouraging results obtained in 
this work show that ANNs can be very useful as tools to predict water quality and can contribute 
signifi cantly to the effort that is needed for a constant improvement not only on the management of 
the reservoirs but also on the preservation of the quality of the water.
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