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ABSTRACT
Movement on earth is effected by bodies (e.g. river channels, animals, vehicles) of seemingly random scales, 
large and small. Here we use the constructal law and the design of ‘distributed energy systems’ to show that 
the large must be few and the small many, in particular proportions that are required for greater access for 
movement on areas. First, we demonstrate that mass movement per kilogram moved and kilometer traveled 
requires less fuel on larger vehicles. The thermodynamics basis of this is the same as for the effect of size on 
the efficiency of motors, vascular flow architectures and river basins. The same principle dictates that on every 
vehicle the motor mass must scale with the structural mass, and with the total mass. In addition, larger masses 
must move on areas to greater distances, and a characteristic number of smaller masses must be allocated to a 
larger mass to travel, on the same area element.
Keywords: constructal law, distributed energy systems, multiscale flow, river basins, scaling up, size effect, 
vascular design.

Distributed energy systems1  
The designs of animals show that the generation and use of motive power is distributed throughout 
the body. It is not centered in a single spot, nodule or organ. The animal muscle is like a quilt of 
patches served by two kinds of flow systems: (a) tissues that generate movement (contraction), and 
(b) vascularization that feeds, cleanses, and endows the tissue with the ability to sense and act. So 
perfect is the allocation of power generation to the networks for supply and distribution that the 
untrained eye sees the tissue as one or, at the most, as a complicated (multiscale) porous flow struc-
ture. The allocating of one flow system to the other flow system in the same confined space is the 
secret of the design. How are such designs made? How do they function?

Like the animal muscle, the patchwork of power generation, distribution, and use happens naturally. 
Unlike the animal muscle, which has spent millions of years in the factory of evolution, our energy 
systems evolve in front of our eyes. They morph while they grow. They produce more power, and they 
produce the power more efficiently. Why?

These features are fundamental in the context of a sustainable energy future for our planet [1]. The 
inhabited surface of the earth is covered flow designs with the same two main features:

Nodes, large channels of power generation, embedded in1.	
Networks of supply and distribution.2.	

Features (1) and (2) are allocated to elemental areas, forming a patchwork that covers countries and 
continents. One example is the evolution of air mass transit: its map has history and memory. In 
time, new channels appear and old ones become thicker.

Why this evolutionary phenomenon of ‘allocation’ phenomenon occurs is the key question. The 
flows of nature evolve in time to flow more and more easily, in accord with the constructal law: ‘For 
a finite-size flow system to persist in time (to live), its configuration must change such that it pro-
vides greater and greater access to its currents’ [2]. They attain this ever improving quality through 
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the generation of configuration. Existing designs (literally, drawings) are replaced by new designs 
that flow more easily. Every flow system has its movie, be it in nature or on our drawing boards. In 
this mental viewing fit all the evolutionary scenarios of biology, the emergence of river basins and 
climate, and the evolution of technologies toward greater efficiency [1–11].

Age matters in the evolution phenomena, and it is good for flow performance. The river basin digs 
its channels better and better, and the channels stay in place. The channels have hierarchy: a few 
large channels flow in harmony with the many small channels. A sudden downpour is served well by 
the ‘memory’ built into the old design.

Recent theoretical work on the constructal-law basis of animal locomotion [12] has shown that for all 
types of locomotion (running, flying, swimming), the animal force is roughly equal to the body weight, 
and the minimum work that the body performs is proportional to the body weight times the distance 
traveled. The consumed food or fuel is ‘converted’ into mass moved over a distance. Our cars, construc-
tion sites, and everything else that we do are the result of this conversion. All the animals and all of us 
consume food and fuel, and the result is the shaping, reshaping and mixing of the earth’s surface.

The question of how mass moves on earth traces the fundamental direction of this paper. In addi-
tion to the importance of these fundamentals to the human design of a sustainable and safe future, 
we see three more reasons for considering this direction of inquiry:

First, the need to consider the whole is universal. Yet, most of the research on energy science and 
engineering is devoted to the ‘energy’ side, that is, to more efficient and cleaner production (features 
of type 1 at the start of this section). The remainder of the effort is devoted to the ‘environment’, that 
is, to the human flow networks that interact with the environment (features of type 2). In constructal 
theory, energy (1) and the environment (2) are contemplated together from the beginning, because 
their configurations morph together, hand in glove. From the smallest elemental areas, features  
(1) and (2) come together and form a self-sustaining and long lasting flow tissue, and the tissue is the 
design, the black on white.

Second, the widespread occurrence of distributed energy systems in nature is a very loud hint that 
the future of global energy design belongs to distributed, vascularized systems [1]. In nature, distrib-
uted energy systems occur not only in animal design but also throughout the inanimate flow realm. 
Every channel in a river basin is a combination of (1) motive power (the slope, i.e. the driving 
gravitational potential energy); (2) distribution, use, dissipation (friction along the channel); and the 
allocation of (1) and (2) to the elemental area bathed by the channel. The time arrow of evolution in 
natural flow systems points toward distributed energy systems.

Third, natural flow architectures rule the day because they have evolved into flow configurations 
that flow easier and easier, for example, tree-shaped flows oriented point-to-area or area-to-point. 
They survived because they are free to adapt; that is, their configurations are malleable in spite of the 
constraints. Freedom is good for design [1].

Technology, like the river basin, evolves by morphing, improving and spreading. Technology 
enables our movement. There is no difference between natural flow architectures and the transporta-
tion architectures for humans and goods, which are powered by sources designed and positioned by 
humans on the landscape.

Few large and many small, together2  
With the constructal law, we have begun to predict the emergence of multi-scale designs on the 
landscape in three highly dissimilar domains. First was the distribution of city sizes and numbers on 
a continent, where we predicted the observed Zipf-type distribution of city sizes vs. city ranks [13]. 
The prediction followed from the argument that on every area element of the territory the number of 
those working on the area (e.g. agriculturers) must be proportional to the number of the city dwellers, 
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and both numbers must be proportional to the area allocated to them. This construction rule gener-
ates the multi-scale distribution of demography and is represented theoretically as a straight line on 
a log−log field. The line moves upward, parallel to itself, because the evolution of technology: each 
area element sustains more people in time, on the land and in its allocated human settlement.

The second example was the distribution of fuel use for heating [1]. Humanity needs heating 
all over the globe, and for this reason the burning of fuel occurs all over the globe. Key is the 
observation that all the generated heat (the used and the unused) is eventually discharged as heat 
into the environment (Fig. 1). The challenge is to channel most of this heat through our homes, 
power plants and enterprises before discharging it into the environment. The challenge is to place 
humans and enterprises in the right places on the landscape, as optimally positioned interceptors. 
When this tapestry of interceptors of heat is designed from principle, three major features 
emerge:

The heating needs of humanity are met by burning minimum fuel.••
The total heating dumped into the environment is the smallest that it can be.••
The movement of humanity on the landscape is maximized per unit of fuel consumed.••

Heat is being lost for two reasons: heat leaks from the furnaces, and heat leaks from the pipes that 
distribute the hot water. We found that when the individual need for hot water is small enough, the 
global design with least heat loss per user is the design in which each user relies on one heater, with-
out pipes for hot water distribution. As the amount of hot water used by each individual increases, 
the more economical way is to use a central heater with radial lines of distribution to an optimal-size 
cluster of users. As the individual hot-water need increases with the evolution of the standard of liv-
ing, even more economical are the dendritic clusters, which are larger and more complex. The 
landscape is covered by design, but the design changes abruptly from one configuration to the next, 
as time passes. This is the essential aspect of technology evolution, and how it is anticipated based 
on principle.

The third domain in which we predicted the same emergence of multi-scale configuration on the 
landscape is the distribution of tree sizes and numbers on the forest floor [1, 14]. With the constructal 
law we deduced the configuration of each tree (root, trunk, canopy) as a flow system morphing 
to facilitate two flows: water and stresses. This led to several predictions of vegetation design 

Figure 1: � The ‘engine + brake’ systems of civilization dissipate the work produced with food and 
fuel, and reject it as heat to the ambient. The lasting result of power generation and 
consumption is the moving of mass on earth, i.e. the mixing of the earth’s crust.
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(e.g. Leonardo’s rule, Fibonacci sequence, Huber’s rule), including the proportionality between the 
mass flow rate (from ground to air) through one tree and the diameter of the canopy. Next, from the 
tendency of the entire forest floor to transfer water to the atmosphere came the multi-patch design of 
the forest floor. The predicted distribution of tree sizes vs. rank is again of the Zipf type – a descending 
line of log (size) vs. log (rank) – and is the second instance in which we discovered the Zipf 
distribution as a consequence of the constructal law.

Motor mass versus structural mass3  
An important consequence of the animal locomotion scaling relations [12] is that every animal 
spends its work of locomotion (W) on moving its weight to a distance. For all the animals (swim-
mers, runners, flyers) in the enormous body mass range 10–6–103 kg, the mechanical work (W) 
performed by the animal per distance traveled (L) is proportional to the body weight (Mg),

	 W ~ mglµ 	 (1)

Here g is the gravitational acceleration, and µ is a dimensionless factor of order 1. For flyers, the µ 
factor is of order 1/10, while for swimmers it is of order 1. For runners, the µ factor is between 1/10 
and 1, and depends on the condition of the running surface and the importance of air drag relative to 
friction on the ground. For example, running through snow, mud and sand is represented by a µ value 
close to 1, i.e. close to swimming. Large animals running at high speeds on flat and dry surfaces have 
µ values closer to 1/10, i.e. closer to flyers.

Note that the animal effort formula, eqn (1), is the same as the formula for the work performed 
and dissipated by any of our vehicles, seaborne, terrestrial or airborne. The engine work scales as the 
weight of the vehicle (Mg) times the distance (L) to which the weight is moved. Note the similarity 
between eqn (1) and the formula for the work done during sliding with friction on a solid surface, 
where μ is the Coulomb coefficient of friction.

This brings us to the unifying image presented in Fig. 1. Every mass that is driven to move on 
earth functions as a converter of fuel (or food) into mass moved to a distance. The ‘engines’ represent 
the muscles of animals and the engines of vehicles. Every engine converts heat derived from fuel 
(QH) into work for locomotion (W) and heat rejected to the environment (QH – W). Every moving 
body dissipates its locomotion work (W) by friction against the environment that it penetrates. The 
dissipated work is rejected entirely as heat to the environment.

In sum, every animal and vehicle is an ‘engine + brake’ system. The original heat input (QH) is 
dissipated entirely to the environment. The animals and vehicles are just intermediaries through 
which QH flows. The net effect of the consumption of fuel and food (i.e. the effect of the flow of heat, 
from fuel to ambient) is the movement of the mass (M) of the engine + brake system to a distance L 
in proportion to the work W, in accordance with eqn (1).

Figure 2 is a brief thermodynamics review of how every engine (animal or man made) converts 
fuel or food f(m [kg/s])  into power (W[W])  in steady state. The engine is the aggregate system 
defined with dotted line. In the upper part, the fuel stream is mixed with air and burned to produce 
heat of combustion at the rate h fQ =m hV,   where the factor HV [J/kg] is the heating value of the 
fuel. In the lower part of Fig. 2, the heating rate hQ  is converted into power W  (work per unit 
time). The energy conversion efficiency of the aggregate system is hW/Q ,η=   which means that 

fW = m hV.η   If the movement of the engine + brake system requires the time t, then the work of 
locomotion is W = Wt ,  the amount of fuel spent is f fm =m t ,  and

	 fW = m hVη 	 (2)
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For more movement (W, or ηMgL), the system must use more fuel (mf), and must use it more 
efficiently (η). Conversely, if the movement (W) is specified, then it can be accomplished with less 
fuel when the efficiency η is greater,

	
f

mgl
m =

hV

µ
η

	 (3)

The efficiencies of man made power plants (moving or stationary) have been increasing in time 
(Fig. 3, top). Less known is the size effect documented in the lower part of Fig. 3: the more efficient 
engines are larger [2, 15]. Both evolutionary phenomena, the top and the bottom of Fig. 3, are linked 
to design changes that make it easier for all the currents (fluid, heat) to flow through the flow system. 
This is the time direction of design generation and evolution recognized as the constructal law.

In the lower part of Fig. 3, the size of the power plant is represented by its net power output. A 
larger size also means larger duct cross-sections for fluid flow, larger surfaces for heat transfer, larger 
turbines (larger flow passages), etc. A larger size means more mass installed in the motor, Mm.

The monotonic relation between efficiency (η) and motor mass (Mm) can be anticipated theoreti-
cally by taking into account the resistances encountered by the flow of fluid and heat inside the 
motor. The key feature of the increase of η with Mm is the diminishing returns. The efficiency cannot 
be greater than the Carnot efficiency, and this means that the rate at which η increases with size must 
decrease as the size increases,

	 m

2

2

d
0

dm

η
< 	 (4)

Figure 2: �A  heat engine executing cycles, or operating in steady state receives its heat input from a 
steady-combustion chamber that burns fuel at the rate fm [kg/s].  The heating produced by 
the combustion chamber hQ  is proportional to the fuel flow rate fm . The power output 
is hW = Q ,η   where η is the ‘first law’ efficiency of the engine. The power W  is 
proportional to the product fm .η   For more power, we need two design changes: more fuel 
consumption and higher efficiencies.
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The relation η(Mm) is monotonic and concave. An adequate approximation of such a relation in the 
vicinity of the present-time values for η and Mm is

	 1 m= c mη a 	 (5)

where α is less than 1, and C1 is a constant.
The concavity of η vs. Mm derives from the fact that α is less than 1. As we will show, this feature 

is key. In the fuel requirement, eqn (3), the moving mass M has two main parts, the solid structure (the 
stress-loaded structure of the vehicle, or the skeletal mass of the animal, Ms) and the structure 

Figure 3: � The efficiencies of heat engines have been increasing in time, and the more efficient are 
larger [15]. The efficiency η is hW/Q ,  cf. Fig. 2 (top). The second law efficiency IIη  is 
the ratio revW/W ,   where revW  is the power generated with the same heat input hQ  in the 
theoretical limit of reversible operation.
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permeated by flows of fluid, heat and other currents (the ‘motor’ structure of the vehicle, or the ‘mus-
cle’ mass, Mm):

	 s mm = m + m 	 (6)

Combining eqns (5) and (6) with eqn (3) we find that the amount of consumed fuel depends on how 
the vehicle mass M is allocated to Ms and Mm,

	

s m
f

1
m

m + mgl
m

c hV m

µ
= ⋅

a
	 (7)

In the limit of small motor masses, Mm < Ms, the fuel requirement increases as s mm /m .a  In the limit 
of large motor masses, Mm > M, the fuel increases as m

1m −a , because1 0.− >a  The fuel used is 
minimal in between, at the intersection of the two asymptotes, s m m

1m /m ~ m ,−aa  which is the design 
where the motor mass scales with the structural mass,

	 m sm ~ m 	 (8)

This conclusion is robust because it is independent of the value of α, as long as α < 1.

Larger motors are more efficient4  
Here we predict how ‘size’ should influence the efficiency of any engine. The finiteness of sizes is 
why currents must overcome flow resistances, degrading in this way the global efficiency of the 
engine. Consider the model of Fig. 4, where the engine is a closed thermodynamic system in steady 

Figure 4: �M odel of steady-state engine with two irreversibilities due to ‘finite size’: heat transfer 

hQ  across a finite temperature difference (TH – T), and fluid flow (m)  with pressure drop 
(∆P) against a flow resistance. The finite size is associated with the duct with fluid flow 
and heat transfer: diameter D, and length L. The rest of the system defined with dashed 
line is free of irreversibilities.



	 S. Lorente & A. Bejan, Int. J. of Design & Nature and Ecodynamics. Vol. 5, No. 3 (2010)� 261

state. We identify two currents that are necessary, and which must overcome two resistances, one for 
heat transfer (HT) and the other for fluid flow (FF):

(HT) � The heat input QH is provided by the heat source of temperature TH. The temperature differ-
ence (TH – T) is necessary because the area of thermal contact between the heat source (TH) 
and the hot side of the engine (T) is finite and of order DL,

	 h hQ ~ hDl(T T)− 	 (9)

		 �   The heat transfer coefficient (h) between the heat source and the duct surface is assumed 
constant.

(FF) � The stream of working fluid that circulates through the engine (m)  must overcome the resis-
tance posed by the duct of length L and diameter D. If the flow is single phase, turbulent and 
fully developed, the pressure drop along the duct scales as 2 5P ~m l/D∆  , and the required 
pumping power scales as 

pW ~ m P /∆ ρ,   therefore

	
p

3

5

m l
W ~

Dρ

 	 (10)

The rest of the engine model is free of thermodynamic irreversibilities. This means that the net 
power output is equal to the Carnot power associated with T and TL, namely h lQ (1 T /T)− , minus 
the pumping power requirement estimated in eqn (11),

	

l
h p

T
W Q 1 W

T
 = − −  

  	 (11)

If the resistances HT and FF did not exist, the power output would be the Carnot power associated 
with TH and TL,

	

l
rev h

h

T
W Q 1

T

 
= −  
 	 (12)

The efficiency of the nonideal model (Fig. 4) can be evaluated either as in the lower part of Fig. 3 
(using the first law efficiency 

h= W/Qη  ), or by using the second-law efficiency defined as

	 rev

W
II W

η =

 	 (13)

The two efficiencies are proportional, 
II l h/ =1 T /T ,η η −  constant.

The physical dimensions D and L are proportional to the length scale of the engine, which in Fig. 4 
is represented by the tube of mass scale

3m ~ lρ , where ρ is the average density of the tube filled with 
working fluid. Writing

	
scale

1 / 3
m

(D,l) l
 

∼ ∼   ρ 
	 (14)

and combining eqns (9)–(14), in the limit 
II 1η →  we obtain

	 II hT FF
2/3 4/3=1 c m c m− −η − − 	 (15)
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where the constant factors CHT and CFF account for the specified characteristics of the two flow 
resistances,

	

l h
hT FF

h h l rev

2/3 1/3 3T Q m
c ~ c

hT (T T ) W

ρ ρ
∼

−

 
 	 (16)

The efficiency formula (15) explains why the size (M) matters to the efficiency of any engine. As the 
size increases, both flow resistances decrease in importance, and ηII approaches the Carnot limit,  
ηII = 1. Noteworthy is the concavity of the ηII(M) relation, which is in accord with eqn (4). Assume 
that eqn (15) is represented by the simpler form

	 II 2
k1 c m−η = − 	 (17)

where k is a constant comparable with 2/3 and 3/4. Next, in eqn (5) replace η with II l h(1 T /T )η − , 
and Mm with M. If we force eqn (17) and the modified eqn (5) to agree in value II( )η  and slope 

II(d /dm)η , then in the limit II 1η →  the match is assured if

	

II

l h

1
k

1 T /T

− η
=

−
a 	 (18)

Note the absence of the factors C1 and C2. Although both II(1 )− η  and l h(1 T /T )−  are smaller than 1, 
in the limit II 1η →  their ratio is smaller than 1. In conclusion, α is comparable with k, but on the 
low side of k.

Rivers as water mass vehicles5  
Larger rivers are more efficient as vehicles of water mass. This is not the usual view of what rivers 
accomplish, but it is easy to recognize by re-examining the traditional description of a river flowing 
in a channel in steady state. Assume that the channel is inclined at the small angle β. Its length is L, 
and the relative height of its high end is H ~ βL. The channel depth and width are proportional to 
each other (this, to facilitate flow access [2]), and are represented by the transversal length scale D.

The water mass residing in the channel is M ~ ρD2L. This mass is pulled downstream by the lon-
gitudinal component of its weight Mg, which is Mgβ. The downstream force is balanced by the 
upstream friction force posed by the river bed, τDL, where τ is shear stress, τ ~ CfρU2, and Cf and 
U are the skin friction coefficient (a constant of order 0.01) and U is the mean water speed. From this 
force balance results the water speed,

	 f

1 / 2
g D

U
c

 β
∼    	 (19)

With reference to eqn (3) then, the role of fuel in the river-mass vehicle is played by the gravita-
tional potential energy, which is of order MgH. The role of work of locomotion [namely, μMgL in 
eqn (3)] is played by the kinetic energy imparted to the body of water, which is of order MU2. 
Therefore the efficiency η of eqn (3) becomes

	 f

D/l
~

c
η

	 (20)

and it shows that wider channels (larger D) are more efficient vehicles for moving water mass. 
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Another way to see the physics meaning of eqn (20) is by asking how the work of locomotion 
MU2 is subsequently converted on a horizontal plain into moving the mass M to the new (longer) 
distance Lplain, against the friction force (τDL)Lplain. From this follows Lplain ~ D/Cf and the conclu-
sion that larger rivers (larger D) spread farther (to a larger L) before they come to rest. Again, a larger 
size means a more efficient vehicle for moving mass horizontally.

Hierarchy of mass movers6  
Now think of a vehicle of mass M1 = Ms1 + Mm1. Because of mass scaling for minimal fuel or food 
consumption, eqn (9), the mass of the vehicle is represented by a single mass scale, M1. The mass 
scale of a vehicle of a different size is M2. If there is one M1 vehicle and n vehicles of size M2, then 
the total mass that moves on an area is

	M  = M1 + nM2	 (21)

According to eqns (3) and (5), the amount of fuel required to transport a mass (M1 or M2) to 
the distance L is proportional to 1

1,2 1,2 1,2(m /m ) l = m l,− aa  where (1 – α) < 1 because α < 1. This 
means that the total fuel required to transport the total mass shown in eqn (21) is proportional to 
the sum

	 f f1 f2 1 1 2 2
1 1m = m nm m l nm l− −+ ∼ +a a 	 (22)

where L1 is the distance traveled by M1, and L2 is the distance traveled by each of the masses M2.
If the total mass (M) is fixed, then according to eqn (21) we have the freedom to select two vari-

ables, e.g. M1 and M2 (or n). The result of minimizing the mf expression (30) with respect to M1 and 
M2 subject to the constraint (21) is

	

2 2

1 1opt

1/
m l

m l

   
=      

a
	 (23)

This result is remarkable because it is n-independent, and it recommends the use of the smaller 
vehicles (M2) on the shorter route (L2). When eqn (23) holds, the total vehicle mass (29) becomes

	

2
1

1

1/
l

m m 1 n
l

   = +    
 

a

	 (24)

The minimal fuel requirement that corresponds to eqns (23) and (24) is

	 f,min 1 2
1 1 1m m (l n l )− / /= +a a a 	 (25)

Next, consider the rectangular area (A = L1L2) that is swept by M1 along L1, and by the n masses 
M2 along L2. The further minimization of mf,min with respect to L1 and L2 subject to A = constant 
yields the optimal shape of the swept area

	

1

2 opt

l
n

l

 
=  

a 	 (26)

and the minimum fuel requirement on A,
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	 f,min,min
1 1/2 1/2m =2m n a− a a 	 (27)

In the preceding analysis we viewed the moving masses as vehicles, and because vehicles result 
from complex processes of economics and manufacturing, the total vehicle mass (M) was used as 
reference. The analysis that followed was the search for the best way to distribute M among the large 
and small vehicles. The result of the double minimization of mf, eqn (26), can be combined with  
eqn (23) to discover that the best way to allocate the vehicle mass is by partitioning it equally, one 
mass for one large vehicle, and an equal mass for all the vehicles of smaller size,

	M 1 = nM2	 (28)

An alternative way to allocate mass movement on A is to view the moving masses as the material 
(the load, the charge) that the vehicles are carrying. In other words, the loads are larger than the bod-
ies of the vehicles themselves. The flow of load material is conserved, and this means that the load 
carried by the small vehicles (total mass nM2) is the same as the load carried by the large vehicle 
(mass M1). This alternative view is represented, coincidentally, by eqn (28), in which M1 (or nM2) is 
the specified mass that sweeps A.

The question is what varies, and how the configuration morphs such that the total fuel required for 
moving M1 on A is minimal. We answer this by minimizing the mf expression (22) subject to eqn 
(28) and A = L1L2. There are only two degrees of freedom, n (or M2) and L1/L2. The result of the 
minimization with respect to L1/L2 is

	

1

2 opt

l
n

l

 
=  

a 	 (29)

	
−α α/2=f,min 1

1 1/2m 2m n a 	 (30)

These results are similar to eqns (26) and (27).

NUMBER OF SMALL MASSES ALLOCATED TO ONE LARGE MASS7  
Not determined at this point is the number n, which accounts for how the total mass is allocated to 
the small (M2) and the large (M1). We show here that n depends on the pattern displayed by the 
masses as they sweep the area together, and that n can be selected such that the total fuel used on the 
entire area is minimal.

For illustration, start with the square area shown in Fig. 5, which has four area elements of size 
2
0l . Each elemental area is traveled by a small (elemental) mass M0 along a path of length L0/2. The 

large mass that travels the area (in or out) is 4M0.
The path followed by the mass of size 4M0 is not unique. In Fig. 5a, the mass 4M0 is constituted 

after two consecutive pairings of the small mass. After the first pairing, each mass of size 2M0 travels 
the distance L0/2. After the second pairing the mass 4M0 travels the distance L0. The fuel required 
by this entire mass movement is calculated (one mass at a time) by using eqn (22) and accounting 
for every mass,

	
f,5a 0 0

(1 )1 2 21
m m l 2 2 2

2
− +− − = + +  

aa a 	 (31)

An alternative flow pattern is used in Fig. 5b, where the four M0 movements are attached to a stem 
of length 3L0/2. The mass that moves along the stem is 2M0 along L0, followed by 4M0 along L0/2. 
The total fuel is calculated (mass by mass) using eqn (22),
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f,5b 0 0

(1 ) (1 2 )1 2 1
m m l 2 2 2

2
− + − +−  = + +  

a aa 	 (32)

The first conclusion is that the design with stem (Fig. 5b) is better, because mf, 5b < mf, 5a. But, is 
the n = 4 pattern with stem the best? In other words, should four small masses always be allocated 
to one large mass? To answer this question we turn to Fig. 6, which shows the general case of a 
square area with n masses. Start with the movement of mass on the very slender area 0 0(N/2)l 2l×  
shown in Fig. 6a. There are N/2 elemental areas and masses on each side of the stem. Next, assume 
that N >> 1, therefore the length of the stem approaches (N/2)L, and the mass that moves along the 
stem is distributed almost linearly, from zero at the left end to NM0 at the right end. The total fuel 
required to move all the masses on Fig. 6a is calculated with an equation such as eqn (22).

Finally, we use N of the slender designs of Fig. 6a in order to make the square-area design shown 
in Fig. 6b. Now there are N/2 slender designs on each side of a stem of length that approaches (N/2)
(2L0). The mass varies almost linearly along this new stem, and reaches N2M0 at the right end. The 
total fuel requirement is N times the fuel calculated in the preceding paragraph plus the fuel for 
moving the mass along the stem of Fig. 6b. The result is

	

f,6b 0 0

1
1 2 N

m m l N 1 + (1+ N )
2

−
− −

 
 =

−  

a
a a

a
	 (33)

Equations (33) and (32) have the same form. The size of the square domain is (NL0)
2, or 0

2nl , 
and the number of elemental masses that reach the main stem is n = N2. Furthermore, eqn (32) rep-
resents the special case N = 2 (or n = 4) of eqn (33). The total fuel requirement increases with the 
size of the territory (NL0)

2, and with the factor shown in the square brackets. That factor represents 
the fuel spent per unit area, and it is minimum when

	
opt

2 1
N

1

−
=

−
aa

a
	 (34)

We just discovered that N (or n) should have a particular value, which is dictated by the ‘economies 
of scale’ exponent α. Special is the case α = 2/3 when Nopt = 1. The number Nopt (or nopt) increases as 

Figure 5: � Two ways in which four small masses (M0) coexist with one large mass (4M0) as they 
sweep the same area. Design (a) is based on two successive pairings of small masses into 
larger masses. Design (b) has a stem: the four masses are moving to (or from) a central 
stem traveled by the large mass.
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α increases from 2/3 to 1. If α = 3/4, then Nopt = 24/3 and nopt = 44/3, which is approximately the same 
design as the n = 4 design used in Fig. 5b. In conclusion, the construction rule of allocating four small 
masses to one large mass (Fig. 5b) is recommended when α is comparable with 3/4. This  
construction is consistent with eqn (29), where if we substitute 1 0l =(3/2)l  and 2 0l =(1/2)l  (cf. 
Fig. 5b), we obtain L1/L2 = 3, which is comparable with 3/4n = 4 =2.83.a

Conclusions8  
In this paper we showed that the constructal law commands the emergence of hierarchy in the move-
ment of mass on earth. The movement on an area is accomplished with greater ease when the mass 
travels in bodies of multiple scales. The large must be few, and the small must be many. There must be 
a certain number of small bodies that are ‘allocated’ to a larger body, as they all move on the area.

The movement of mass as vehicles and animals is ruled by the same constructal law that accounts 
for the emergence of hierarchy in river basins. The moving bodies analyzed in this paper are analo-
gous to and more general than the parcels of water in the river basin, and eddies in a turbulent flow. 
The vehicles and animals are self-driven − they transform fuel and food on board − whereas the 
water parcels are driven by gravitational potential energy, and the eddies are driven by their kinetic 
energy.

Here is an even simpler way to see why ‘few large and many small’ should be the design that 
emerges naturally, according to the constructal law. Analytically, the description of the flow of mass 
is analogous to the description of the flow of water in river channels:

	 Vehicles	R ivers

Dissipation (fuel, power)	 f

ml
m

m
∼

a
	

3

5

m l
W

D
∼


Mass conservation	
1 2m = nm

	
1 2m = nm , (n = 4, horton’s rule [6, 16]) 

Figure 6: � The construction of mass movement of a large square area traveled by N2 small masses M0, 
which feed (or are fed by) a large mass that moves along a central stem. Design (a) shows how 
to distribute N masses to an intermediate stem of length (N/2)L0. Design (b) is the square 
construction in which N designs of type (a) are connected like leaves on a main stem. Note that 
design (b) is the general version of the design of Fig. 5b (which is the special case N = 2).
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The difference between the two classes of flow systems is that in river channels the thickness of the 
channel is represented by D5, while in vehicles is m .a

Several other features of the mass movement design follow from the same law. The larger bodies 
must travel the longer distance on the fixed area. If the moving mass is a vehicle (or animal), the 
motor (muscle) mass must scale with the structural (skeleton) mass, and with total mass. The larger 
vehicles and animals are more efficient than the smaller. The ‘few large and many small’  
pattern is an integral part of the global design.
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