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ABSTRACT
This paper applies constructal design to optimize the geometry of a C-shaped cavity that penetrates into a solid 
conducting wall. The objective is to minimize the global thermal resistance between the solid and the cavity. 
There is uniform heat generation on the solid wall. The total volume and the cavity volume are fixed, but the 
geometric lengths of the C-shaped cavity can vary. The cavity is cooled by convection heat transfer. The results 
indicate that the shape of C-cavity is optimal when it penetrates the conducting wall almost completely for the 
external ratio of the solid wall smaller than 2. For external ratio larger than 2 the optimal cavity ratio is the one 
that presents the largest cavity aspect ratio H0/L0. The results also show that the cavities with small or large 
external ratios H/L are the ones that present better performance.
Keywords: cavities, constructal design, enhanced heat transfer, fins.

INTRODUCTION1 
This paper reports numerically the optimization of the global performance of a C-shaped cavity that 
intrudes into a solid conducting wall. The optimization is conducted by applying constructal design. 
According to this method ‘the flow geometry is malleable and it is deduced from a principle of glo-
bal performance maximization subjected to global constraints’ [1, 2]. This method is based on 
constructal theory: ‘the view that flow configuration (geometry, design) can be reasoned on the basis 
of a principle of configuration, generation and evolution in time toward greater global flow access in 
systems that are free to morph’ [3].

The many applications of constructal theory to generate configuration in nature, and engineering 
has been reviewed recently [4]. This reference shows how natural configuration – river basins, tur-
bulence, animal design, crack in solids, earth climate, etc. − can be predicted by principle. The same 
principle can be applied in the engineering realm: packing of electronics, fuel cells, tree networks 
for transport of people, goods and information, etc.

The heat transfer field has dedicated great attention to the study of fins arrays [5, 6]. Another class 
of configurations are the open cavities. These are the regions formed between adjacent fins, and they 
may represent essential promoters of nucleate boiling: see, for example, the Vapotron effect [7–9] 
that occurs as a consequence of the thermal interaction between a non-isothermal finned surface and 
a fluid locally subjected to a transient change of phase. The significance of fins and cavities are rec-
ognized by the application of constructal method in the pursuit of best shapes of assembly of fins 
[10, 11] and cavities [12–14].

In this paper we apply constructal design to optimize the geometry of the C-shaped cavity. Accord-
ing to constructal design, the cavity shape is free to change subject to volume constraints in the 
pursuit of maximal global performance. The global performance indicator is the global thermal 
resistance between the volume of the entire system (cavity and solid) and the surroundings. For 
simplicity and clarity, we consider two-dimensional bodies: the solid wall and the C-shaped  intrusion 
with variable geometric lengths.
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MODEL2 
Consider the conducting body shown in Fig. 1. The configuration is two-dimensional, with the third 
dimension (W) sufficiently long in comparison with the height H and the length L of the volume 
occupied by the body. There is a C-shaped cavity intruded in the body. The solid is isotropic with the 
constant thermal conductivity k. It generates heat uniformly at the volumetric rate q"' (W/m3). The 
outer surfaces of the heat generating body are perfectly insulated. The generated heat current (q"'A) 
is removed by convection heat transfer through the cavity walls. The heat transfer coefficient h is 
uniform over all the exposed surfaces, as well as the environment temperature T∞.

The objective of the analysis is to determine the optimal geometry (H0/L0, H/L) that is character-
ized by the minimum global thermal resistance (Tmax – T∞)/(q"'A). According to constructal design 
[3], this optimization can be subjected to two constraints, namely, the total area,

 A = HL, (1)

and the cavity area,

 A0 = H0L0. (2)

This can be expressed as the cavity fraction

 0 0= A /A.f  (3)

The analysis that delivers the global thermal resistance as a function of the geometry consists of 
solving numerically the heat conduction equation along the solid region,
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Figure 1: C-shaped cavity.
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where the dimensionless variables are
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The outer surfaces are insulated and their boundary conditions are
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The boundary conditions on the cavity surfaces come from balancing the conduction and convection 
heat transfer, and their dimensionless resulting values are given by
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where λ is defined as
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The dimensionless form of eqns (1) and (3) are

 0 0 01 HL and H L .f= =   
 (13)

The maximal excess temperature, θmax, is also the dimensionless global thermal resistance between 
the volume of the entire system (cavity and solid) and the surroundings
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NUMERICAL METHOD3 
The function defined by eqn (14) can be determined numerically, by solving eqn (4) for the 
 temperature field in every assumed configuration (H/L, H0/L0), and calculating θmax to see whether 
θmax can be minimized by varying the configuration. In this sense, eqn (4) was solved using a finite 
elements code, based on triangular elements, developed in MATLAB environment, precisely the 
PDE (partial-differential-equations) toolbox [15]. The grid was non-uniform in both x  and y , and 
varied from one geometry to the next. The appropriate mesh size was determined by successive 
refinements, increasing the number of elements four times from the current mesh size to the next 
mesh size, until the criterion | j j+1

max max )(θ − θ |/ j
maxθ  < 1 × 10–4 was satisfied. Here j

maxθ  represents the 
maximum temperature calculated using the current mesh size, and j

maxθ  corresponds to the maxi-
mum temperature using the next mesh, where the number of elements was increased by four times. 
Table 1 gives an example of how grid independence was achieved. The following results were per-
formed by using a range between 2,000 and 10,000 triangular elements. The validation of the 
numerical method has been tested in former works [12–14] and will not be shown.

CONSTRUCTAL GEOMETRY4 
The numerical work consisted of determining the temperature field in a large number of configura-
tions of the type shown in Fig. 1. Figure 2 shows that there is an optimal cavity ratio (H0/L0)opt that 

Table 1:  Numerical tests showing the achievement of grid independence (φ0 = 0.1, λ = 1, H/L = 1, 
H0/L0 = 0.15, H/L = 1).

Number of elements θ j
max |(θ j

max – θ j+1  
max)|/ θ

j
max

161 0.642868 5.693 × 10–4

644 0.643239 1.305 × 10–4

2,576 0.643318 2.487 × 10–5

10,304 0.643334

Figure 2:  Minimization of the dimensionless global thermal resistance as function of H0/L0 for 
several values of the fraction of the area of the solid inserted into the cavity.
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minimizes the dimensionless global thermal resistance when the volume fraction φ0, the dimension-
less group λ and the degree of freedom H/L are fixed. Figure 2 also shows the optimization of the 
dimensionless global thermal resistance, θmax, for several values of the volume fraction of the solid 
inserted into the cavity, φ0.

The results of Fig. 2 were summarized in Fig. 3, which presents the once minimized dimension-
less global thermal resistance, θmax,m, and the once optimized cavity ratio (H0/L0)opt, as function 
of the volume fraction, φ0. This figure indicates that θmax,m decreases and (H0/L0)opt increases 
when φ0 increases. The best shapes calculated in Fig. 3 are shown in Fig. 4. This figure confirms 
that cavities perform better when they penetrate almost completely into the body [12–14] when 
the ratio H/L = 1.

Figure 5 shows the behavior of the dimensionless global thermal resistance, θmax, as function of the 
dimensionless group λ and the volume fraction φ0 when the cavity is square and the dimensionless 
group λ is equal to 1. This figure indicates that the dimensionless global thermal resistance decreases 
when the volume fraction φ0 and the dimensionless group λ increase. The effect of the dimensionless 
group λ and the volume fraction φ0 in the optimal shape of the C-shaped cavity is shown in Fig. 6. The 
optimal shape of the C-cavity is almost insensitive when the volume fraction is small or large. 

Figure 3:  The behavior of the best shapes and the minimal dimensionless global thermal resistance 
calculated in Fig. 2 as function of the volume fraction φ0.

Figure 4: Illustration of some optimal shapes from Fig. 3.
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 However, this optimal shape increases when the dimensionless group λ increases in the range 0.3 ≤ 
φ0 ≤ 0.7, and this increment is maximal and approximately 20% when φ0 = 0.5 and λ = 1.

Figure 7 presents a comparison between the optimal cavity ratio calculated for the isothermal 
C-shaped square cavity [12] and the cavity bathed by convection. The results show that the optimal 
shape of the cavities is almost the same for λ ≤ 0.01. Both results also agree for φ0 < 0.3 and φ0 > 0.7. 
However, in the range 0.3 ≤ φ0 ≤ 0.7, the ratio (H0/L0)opt calculated for the cavities cooled by convec-
tion is greater than the optimal shape calculated for isothermal cavities. This difference is 
approximately 17% when λ = 0.1 and φ0 = 0.7, and 20% for λ = 1 and φ0 = 0.5.

The next step in the search for best shapes is to investigate the behavior of the dimensionless glo-
bal thermal resistance by varying its external shape, H/L. We do this simulation by fixing the 
dimensionless group λ equal to 0.005 and by repeating the procedure of Figs 2 and 3 for several 
values of H/L. Figure 8 shows that the dimensionless global thermal resistance presents a maximum 

Figure 5:  The behavior of the dimensionless global thermal resistance (θmax) as function of the 
dimensionless group λ and the volume fraction φ0.

Figure 6:  The effect of the dimensionless group λ on the optimal shape of the C-shaped cavity for 
several values of volume fraction φ0.
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when H/L = 2 and increases when φ0 increases. Therefore, cavities with small or large external ratios 
H/L present better performance in the range of the studied external ratio. It is also interesting to 
notice in Fig. 9 that the optimal ratio (H0/L0)opt is unique except for the external ratio H/L = 2. For 
this external ratio there are two (H0/L0)opt values for all the studied values of the volume fraction φ0, 
except for φ0 = 0.9, where there is a unique value for (H0/L0)opt. The optimal ratio (H0/L0)opt increases 
when the external ratio H/L also increases. The effect of the volume fraction φ0 is also shown in  
Fig. 9. The optimal ratio (H0/L0)opt increases when the volume fraction increases for values of  
the external ratio H/L smaller than 2. When the external ratio H/L is greater than 2 the optimal ratio 
(H0/L0)opt increases when the volume fraction φ0 decreases. Finally, some of the best configurations 
of Fig. 9 are presented in Fig. 10 for several values of the external ratio H/L. It is worthy to know 
that for values of H/L greater than 2 the best shape is no longer the one that penetrates completely 
into the solid wall, but the one that presents the largest cavity aspect ratio H0/L0.

Figure 7:  Comparison between the optimal ratio (H0/L0)opt obtained in this work with the ones 
calculated by Biserni et al. for isothermal square cavities.

Figure 8:  The behavior of the minimal dimensionless global thermal resistance as function of the 
ratio H/L and the volume fraction φ0.
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CONCLUSIONS5 
This work applies constructal design method to perform the minimization of the global thermal 
resistance of a C-shaped cavity inserted into a solid wall which generates volumetric heat uniformly. 
The cavity is cooled by convection heat transfer.

The results show that cavities cooled by convection heat transfer perform better if they penetrate 
almost completely into the body when the external ratio of the solid wall, H/L, is smaller than 2.

The dimensionless global thermal resistance, θmax, decreases when the volume fraction φ0 and the 
dimensionless group λ increase. When compared with the optimal cavity ratio calculated for the 
isothermal C-shaped square cavity [12], the cavities cooled by convection have almost the same 
optimal shape for values of the dimensionless group λ ≤ 0.01. Both cavities, isothermal and cooled 
by convection, also present similar optimal shapes for φ0 < 0.3 and φ0 > 0.7. However, in the range 
0.3 ≤ φ0 ≤ 0.7 the ratio (H0/L0)opt calculated for the cavities cooled by convection is greater than the 
one presented by isothermal cavities. This difference is approximately 17% when λ = 0.1 and φ0 = 
0.7, and 20% for λ = 1 and φ0 = 0.5. This means that cavities with small or large external ratios H/L 

Figure 9:  The behavior of the optimized ratio (H0/L0) as function of the ratio H/L and the volume 
fraction φ0.

Figure 10: Examples of the best shapes calculated in Fig. 9 for the volume fraction φ0 = 0.1.



220 L.A.O. Rocha et al., Int. J. of Design & Nature and Ecodynamics. Vol. 5, No. 3 (2010)

present better performance. It is also interesting to notice that the optimal ratio (H0/L0)opt is unique 
for each selected external ratio H/L, except for the external ratio H/L = 2. For this external ratio there 
are two (H0/L0)opt values for all the studied values of the volume fraction φ0, except for φ0 = 0.9, 
when there is a unique value for (H0/L0)opt. The optimal ratio (H0/L0)opt increases when the external 
ratio H/L also increases. The optimal ratio (H0/L0)opt increases when the volume fraction increases 
for values of the external ratio H/L smaller than 2. When the external ratio H/L is greater than 2, the 
optimal ratio (H0/L0)opt increases when the volume fraction φ0 decreases.

It is worthy to know that for values of H/L greater than 2 the best shape is no longer the one that 
 penetrates completely into the solid wall, but the one that presents the largest cavity aspect ratio H0/L0.
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