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ABSTRACT
This paper is focused on the analysis of the numerical solution of flow problems in irregular domains. 
The numerical approach is based on the weighted least squares (WLS) approximation constructed 
over the local support domain, i.e. a sub cluster of computational nodes, to evaluate partial differential 
operators, in our case spatial derivatives up to second order. There are several possibilities for elegant 
formulation as well as computer implementation of such method, which are first and foremost conse-
quence of the fact that the node has to be aware only of the distance to other nodes, i.e. no topological 
relation between nodes is required. The presented meshless approach is applied on the lid-driven cavity 
problem in randomly generated domain. It is demonstrated that using adequately wide support domains, 
i.e. enough support nodes with a proper weighting, provide stable results even in highly deformed 
domains, however, at the cost of the accuracy and computational complexity, especially in cases when 
the support domain changes during the computation. The optimal meshless configuration, i.e. support 
of 15 nodes weighted with Gaussian weight function and monomials up to second order as basis, is sug-
gested based on experimental analyses. The results are presented in terms of comparison with already 
published data on regular nodal distributions, convergence analysis on regular nodal distribution and 
stability analysis of the solution with respect to the level of nodal irregularity and local support size.
Keywords: fluid flow, meshless, parallel, stability.

1 INTRODUCTION
The core of flow problems is the solution of Navier-Stokes Equation [1] or its variants, e.g. 
Darcy or Brinkman equation for flow in porous media. Since the problem is usually not 
solvable in a closed form numerical methods such as the Finite Volume Method (FVM), 
Finite Difference Method (FDM), or the Finite Element Method (FEM) are employed to 
numerically tackle the problem. Besides mesh based methods a class of so-called meshless 
methods that are based on scattered discretization nodes [2] can be used. In this paper, one 
of the simplest class of MMs, Meshless Local Strong Form Method (MLSM), a general-
ization of methods, which are in literature also known as Diffuse Approximate Method 
(DAM) [3], Local Radial Basis Function Collocation Methods (LRBFCM), Generalized 
FDM [4], Collocated discrete least squares (CDLS) meshless [5], etc., is used. The main 
difference between mesh based and meshless methods is that meshless methods shift the 
determination of relation between nodes into the solution procedure. The final goal of such 
an approach is higher flexibility in complex domains, moving boundaries and nodal 
 adaptivity.

Although the meshless methods do not require any predefined relations between nodes and 
even randomly distributed nodes could be used, it is well-known that using regularly distrib-
uted nodes lead to more accurate and more stable results [6–8], which is also confirmed in 
this paper. Therefore, despite meshless seeming robustness regarding the nodal distribution, 
a certain effort has to be invested into the positioning of the nodes. This paper deals with the 
analysis of MLSM in randomized nodal distributions.
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2 METHODOLOGY
The core of the spatial discretization used in this paper is a local approximation of a con-
sidered field over the overlapping local support domains, i.e. in each node we use 
approximation over a small local sub-set of neighbouring n nodes. The trial function is thus 
introduced as

 u p bi i
T

i

m
∧ = =∑( ) ( ) ( )a ap b p ,  (1)

With m p px y, ( , )a, b p,  standing for the number of basis functions, approximation coeffi-
cients, basis functions and the position vector, respectively. When the number of basis 
functions and number of support domain is the same n = m the determination of coefficients 
simplifies to solving a system of n linear equations that results from expressing eqn (1) in 
each support node.
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pi are positions of support nodes and u are values of considered field in the support positions. 
The above system can be written in a matrix form as

 u = Ba, (3)

where B stands for coefficient matrix with elements Bji = bi(pj). System (3) can be effectively 
solved with Cholesky decomposition. The most known method that use such an approach is 
LRBFCM that has been recently used in various problems [9, 10]. If the number of support 
nodes is higher than the number of basis functions n > m a Weighted Least Squares (WLS) 
approximation is used to solve over-determined problem. An example of such approach is 
DAM [3] that was originally formulated to solve fluid flow in porous media. DAM uses six 
monomials for basis and nine nodded support domains to evaluate first and second derivatives 
of physical fields required to solve problem at hand. To determine the approximation coeffi-
cients, a norm
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is minimized, where W is a diagonal matrix with elements Wjj = W(pj) with
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where s stands for weight parameter, p0 for centre of support domain and pmin for the dis-
tance to the first support domain node. There are different approaches to solve (4). The most 
intuitive and also computationally effective is to simply compute gradient of (4) with respect 
to the resulting in

 WBBTa = WBTu (6)

The problem of above approach is bad conditioning. More stable and more expensive 
approach is QR decomposition. Even more stable is SVD decomposition, which is off course 
also more expensive. Nevertheless, the problem can be written in matrix form as

 a = ( )+
W B W u0 5 0 5. . ,  (7)
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where W B0 5.
( )

+

 stand for a Moore–Penrose pseudo inverse. By explicit expression of α into 
the (2) an equation

 u T∧ +
= ( ) =( ) ( ) ( ) ( ) ( ). .p b p W p B W p u p u0 5 0 5 c , (8)

is obtained, where c stand for the shape functions. Now, we can apply partial differential 
operator, which is our goal, on the trial function,

 Lu L∧ =( ) ( ) ,p p uc  (9)

where L stands for general differential operator. In this paper we deal with a Navier-Stokes 
equation and therefore only shape functions for Laplace operator and first derivatives are 
needed, which are pre-computed and stored
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Although the selection of basis function b is general, several researchers follow the 
results from Franke’s analysis [11] and use Hardy’s Multiquadrics; however, in this work 
the monomials up to second order 1 2 2, , , , , ,p p p p p px y x y x y( )  are used based on the results 
presented in [12].

The presented formulation is convenient for implementation since most of the complex 
operations, i.e. finding support nodes and building shape functions, are performed only when 
nodal topology changes. In the main simulation, the pre-computed shape functions are then 
convoluted with the vector of field values in the support to evaluate the desired operator.

The presented approach is even easier to handle than the FDM; however, despite its sim-
plicity it offers many possibilities for treating challenging cases, e.g. nodal adaptivity to 
address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in 
 physical field, furthermore, the stability versus computation complexity and accuracy can be 
regulated simply by changing number of support nodes, etc. All these features can be con-
trolled on the fly during the simulation by re computing the shape functions with different 
setups. However, such re-setup is expensive, since the bb p W p B W( ) ( ). .T 0 5 0 5( )+

 has to be 
re-evaluated, with asymptotical complexity of O(NDnm2), where ND stands for total number 
of discretization nodes. In addition, the determination of support domain nodes also con-
sumes some time, for example, if a kD-tree [13] data structure is used, first the tree is built 
with O(ND(logND) and then additional O(ND(logND + n)) for collecting n supporting nodes.

3 RESULTS
The presented MLSM is tested on a lid-driven cavity problem that has been proposed in 1982 
[14] and it is still widely studied for validation of novel methods and numerical principles, for 
example, recently for meshless methods [15–17]. The problem is defined as

 ∇⋅v = 0,  (13)
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where v, t, P, and Re stand for dimensionless velocity, time, pressure, and Reynolds number, 
respectively. Zero velocity boundaries are assumed except the lid velocity that is set to 1. 
Initial pressure and velocity are set to zero. The problem is solved with MLSM spatial discre-
tization, explicit two level temporal stepping and artificial compressibility method for 
pressure treatment [18].

First, we want to be sure that the MLSM provides accurate results on regular nodal distri-
butions. This is tested by comparison of MLSM results at three different numbers, namely 
Re = [100,1000,3200], against three different solutions, namely, Mramor [15], Sahin [19] and 
Ghia [20]. In Fig. 1 a spatial convergence in terms of maximal vy on a range from N = 121 
(11 × 11) to N = 315844 (562 × 562) uniformly distributed nodes is presented, together with 
a reference data. It can be seen that for all cases results converge towards reference solutions. 
Note that the reference solutions do not represent the convergence behaviour and are added 
only for the sake of comparison.

In this paper we are more interested on the impact of support domain deformation on the 
computation efficiency. To test this behaviour, a randomized nodal distribution is introduced, 
i.e. the initially uniformly distributed nodes are translated by random offsets

 p p ri i D p← + D ,  (15)

where r = (rx, ry) is vector of random numbers within [-1, 1], D is deformation magnitude, pi 
is position of i-th node, and Dp is spatial step of original uniform nodal distribution. In Fig. 2 
the maximal horizontal cross-section velocity with respect to deformation magnitude and 
number of support nodes for different weight parameters is presented.

The very first thing we see is that by increasing the deformation the results becomes unsta-
ble, especially; when the support is small, i.e. small number of nodes influences the 

Figure 1:  The maximal mid-plane velocity max(vy(px, 0.5)) with respect to the number of 
computational nodes for different Re numbers. Horizontal lines stand for reference 
solutions.
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approximation function, as a consequence of a small number of support nodes and/or the 
small weight parameter. However, increasing the weight parameter as well as number of 
support nodes, improves results. Figure 2 serves mainly to determine the stability limit for 
given setup, where the instable setups are represented with zero values, shown as black areas 
on the figure. More precise representation of this behaviour is presented in Fig. 3, where it 
can be also seen that the wider supports result in a lower velocities due to the fact that WLS 
approximation with wide support domains fails to capture all the details in the field. It is 
important to note that the number of support nodes also influences the computational time 
since the generation of shape functions can be estimated to complexity O(nm)2 and the eval-
uation of partial operators to O(n).

From above results we select 15 support nodes weighted with s = 0.75 as reasonable trade-
off between stability, accuracy and computation cost that provides stable results. Finally, in 
Fig. 4, examples of proposed MLSM solution of lid-driven problem on regular and non- 
regular domains are presented.

The introduced formulation has many beneficial effects. One of the most attractive is the 
generality. Note that equations presented in section 2 do not require explicit knowledge about 
dimensionality of the domain. Also the approximation type, basis size, number of support 
nodes are all free parameters. Such generality can be directly implemented in generic lan-
guages like C++. Results presented in this paper are all computed with a such generic 
meshless code that can be downloaded from reference [21]. Besides simplicity and straight-
forward implementation, there are many opportunities to fully exploit modern computer 
architectures through different parallel computing strategies [6].

Figure 2:  The maximal horizontal cross-section velocity with respect to deformation 
magnitude and number of support nodes for different weight parameters.
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4 CONCLUSIONS
This paper deals with a MLSM solution of a Navier-Stokes equation on randomized nodal dis-
tributions, with the goal to identify the most suitable MLSM setup for computations of flow 
problems on irregular domains. First, it is demonstrated, by comparison against already pub-
lished data and convergence analysis, that the MLSM performs well on regular nodal 
distributions. In next step the nodes are scattered by random offsets to mimic the consideration 
of more complex domains [22]. As expected, the randomization destabilized the solution; how-
ever, increasing the support domain improves the results with respect to the nodal deformation. 
However, such stabilization comes with a price in accuracy and computational complexity. 
Ultimately, a setup with s = 0.75 and support size of 15 nodes is chosen as a reasonable trade-
off between stability, accuracy and computation cost that provides stable results.

Future work will be focused on implementation of more complex physical models, more 
detailed analysis of MLSM application on complex 3D domains.

Figure 3:  The maximal horizontal cross-section velocity as a function of deformation 
magnitude, number of support nodes and weight parameter.

Figure 4:  The velocity magnitude contour plot of lid-driven cavity solution in two different 
domains.
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