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ABSTRACT
A formulation is presented to perform crack propagation analyses in cohesive materials with the dual 
boundary element method (DBEM) using the tangential differential operator in the traction boundary-
integral equations. The cohesive law is introduced in the system of equations to directly compute the 
cohesive forces at each loading step. A single edge crack is analyzed with the linear function to describe 
the material softening law in the cohesive zone, and the results are compared with those from the lit-
erature.
Keywords: cohesive model, crack analysis, dual boundary element model, plane problems, tangential 
differential operator.

1 INTRODUCTION
The surfaces of cracks behind the (fictitious) crack tip are not completely separated in some 
materials, such as concrete, brittle polymers, fiber-reinforced composites, tough ceramics 
and some alloys. The tractions can be transferred across the crack line along a relatively long 
extension of the crack, which is commonly called the wake zone, the bridging zone, or the 
cohesive zone. The main assumption is the occurrence of material softening beyond the peak 
load in a narrow layer with a negligible volume behind the fictitious crack tip, in which the 
action can be replaced by cohesive forces (Fig. 1). Two types of constitutive laws for the 
material in the cohesive zone have been used in the literature. This study employs a trac-
tion-displacement relationship in the cohesive zone instead of using a material constitutive 
law that is defined in terms of stresses and strains accompanied by a layer thickening law. 
Barenblatt [1] introduced a cohesive model that employed a fictitious crack. Hillerborg et al. 
[2] proposed a function for a softening model related to an opening (mode I) crack (Fig. 2), 
which allowed finite element analyses of the problem to be performed, such as those by 
Petersson [3], Carpinteri [4], and Rots [5].

The boundary element method (BEM) is superior to the finite element method (FEM) in 
crack propagation analysis because remeshing of the domain is not necessary when the crack 
grows, and new elements can be introduced without affecting the existing elements. The 
coincidence of two crack surfaces requires two different boundary integral equations (BIEs) 
for the solution. The dual boundary element method (DBEM) is a technique that is employed 
for crack propagation analysis. The position of the collocation point to solve the traction BIE 
and the strategy to treat improper integrals are the essential features of the formulation. The 
tangential differential operator (TDO) in conjunction with integration by parts is an interest-
ing procedure for reducing the order of singularity in fundamental solution kernels of traction 
BIEs when Kelvin-type fundamental solutions are employed. Kupradze [7] first presented an 
application using the TDO, and Sladek [8] employed the TDO in a curved crack solution. 
Bonnet [9] presented regularized formulations for the BEM employing the TDO for gradients 
in potential problems and in stress BIEs for elasticity problems, including fracture mechanics 
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Figure 1: Crack in cohesive material (adapted from Hillerborg et al. [2]).

Figure 2: Fracture modes.

formulations. Additional care is necessary in formulations with TDO when non-conformal 
interpolations are used on boundary elements, as was shown in [10] for traction BIEs in plane 
elasticity problems, in [11] for traction BIEs in three-dimensional elasticity and in [12] for 
stress equations in plate bending with the effect of shear deformation.

This study employed isoparametric linear boundary elements with all of the nodal 
 parameters positioned at the ends of the elements. The collocation points were placed or 
shifted to the interior of boundary elements and were always located along the boundary line. 
Continuous or discontinuous boundary-element types were used based on the geometry or 
loading conditions.
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2 DUAL BOUNDARY INTEGRAL EQUATIONS
The dual equations of the method are the displacement and the traction BIEs, which are writ-
ten below for a collocation point that is located on a smooth boundary:
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where Uij (x′, x) and Tij (x′, x) are the displacement and traction, respectively, in the direction 
j at boundary point x due to a singular load in the direction i at collocation point x′ based on 
the Kelvin solution for two-dimensional problems, ui(x) and ti(x) are the displacement and 
traction at boundary point x, respectively, na(x′) is the direction cosine of the outward normal 
at collocation point x′, Cakim is the Hooke tensor for an isotropic material, σibj is the stress σbj 
at boundary point x due to a singular load in the direction i at collocation point x′, Dbm( ) is 
the tangential operator, µ is the shear modulus, ν is Poisson’s ratio and δij is the Kronecker 
delta.

In eqn (1), the left member has a 1/r singularity, and the right member has a logarithmic 
singularity when the field point approaches the collocation point. Both integrals in eqn (2) 
have 1/r singularities because the first employs the tangential differential operator. To 
solve general mixed-mode crack problems with a single domain formulation, the displace-
ment BIE (eqn (1)) is applied to one of the crack surfaces, and the traction BIE (eqn (2)) 
is applied to the other surface. Although the integration path is still the same for coinci-
dent points on crack surfaces, the respective BIEs are now distinct. The collocation points 
must be positioned to satisfy the continuity requirements for each BIE. The continuity of 
the displacement function at x′ is the necessary condition for the displacement BIE, and it 
is satisfied when the collocation point is placed at the ends of the boundary element or 
inside the element. The continuity of the displacement derivative at x′ is required for the 
traction BIE, and it is satisfied when the collocation point is placed inside the boundary 
element [13, 14].

3 COHESIVE ZONE MODEL
The cohesive zone is an extension of the crack in which material softening beyond the peak 
load is located in a narrow layer behind the fictitious crack tip (Fig. 1). The cohesive zone is 
modeled as a crack region containing springs that connect coincidental surfaces. The points 
that were originally coincidental on opposite sides of the crack line separate into distinct 
points and are connected by the cohesive zone material (springs). Continued strain increases 
the separation between these two points and eventually leads to cracking. Several types of 
functions have been presented in the literature to represent the traction-displacement relation, 
which should be suitable for quasi-static loading. The linear function that was adopted in this 
study to represent the softening in the cohesive zone was chosen to allow comparisons with 
the results obtained in [15].
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The py value for the normal traction in Fig. 3 corresponds to the limit without opening 
displacement in the cohesive zone, and wf is the opening displacement limit where the trac-
tion disappears. The simplified maximum principal stress criterion is used to determine the 
crack increment. When the maximum principal stress at a fictitious crack tip reaches the 
critical value of py, the tip will extend under further loading using the constitutive law shown 
in Fig. 3. The tip advances in the direction perpendicular to the direction of the maximum 
principal stress at that point, and the extension is such that the maximum principal stress at 
the new tip position is equal to the critical py value during continued loading. It is important 
to note that structural instability may occur while the crack is advancing; i.e. extension of the 
crack may increase the stress at the crack tip rather than release it.

The linear function shown in Fig. 3 is given by:
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n
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Figure 4 shows a crack region that contains a cohesive zone. The external boundary line of 
the problem is Γe, and the tangent direction that is employed to compute the boundary inte-
grals is shown. Γ1 and Γ4 are portions of the crack surface without cohesive forces (open 
crack), and Γ2 and Γ3 are portions that contain cohesive forces. The cohesive zone has trac-
tions on the crack surfaces with opposite signs and the same magnitudes. The dual equations 
for the problem shown in Fig. 4 can be simplified when the directions and magnitudes of the 
cohesive tractions and the directions of integration on crack surfaces Γ2 and Γ3 are taken into 
account, which yield:
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Figure 3:  Two-parameter constitutive law for the cohesive zone material used in the 
simulations in terms of the normal traction and the displacement jump.
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There was introduced tcj in eqns (4) and (5), which is the traction in the direction j on one of 
the crack surfaces in the cohesive zone. The index c was used because surface Γ2 or Γ3 with 
tractions t2 or t3, respectively, can be used. Γ = Γ1 +Γ2 +Γ3 +Γ4 +Γe, and Γ2 = Γ3 = Γc.

4 NUMERICAL IMPLEMENTATION
The tractions on one of the crack surfaces in the cohesive zone (tc) are the unknowns in the 
system of equations that is obtained from eqns (4) and (5), and the cohesive law is the addi-
tional equation that is used. Thus, the tractions in the cohesive zone are directly computed at 
each loading step in the incremental process.
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Equation (6) summarizes the system of equations where the dual equations, according to eqns 
(4) and (5), are converted to submatrices Hij and Gij, whereas the cohesive law is converted to 
submatrices A, B and C. The indices e, o and z are related to the boundary portions and cor-
respond to the external boundary, open crack boundary and cohesive zone, respectively. 
Submatrices A and B relate the displacements and tractions in the normal and tangent direc-
tions, respectively, on the crack surfaces in the cohesive zone.

This softening criterion works with tractions and openings in the normal direction, which 
means that the tractions in the tangent direction are zero in the cohesive zone. The numerical 
algorithm is summarized below considering the boundary portions shown in Fig. 4:

Figure 4: Crack inserted in a finite domain with boundary Γe.
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(a) The normal tractions (tc) are less than or equal to py; i.e. no opening occurs in the  cohesive 
zone, and opposite points on the crack surfaces have the same displacement.  Submatrices 
B and C are zero, whereas submatrix A contains direction cosines that relate the dis-
placements in the directions xi; i.e. the openings in the normal and tangent directions are 
zero:

 u n u ni i i i
2 2 3 3 0+ =  (8)

 u s u si i i i
2 2 3 3 0+ =  (9)

(b) Subsequent loads after the normal traction has reached py; opening occurs in the cohe-
sive zone according to the cohesive law (eqn (3)). The submatrices B and C are modified 
to introduce the cohesive law in the line that is related to the normal direction, whereas 
the tractions in the tangent direction become zero (the corresponding line in submatrix A 
becomes zero), and eqns (8) and (9) are replaced by:
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(c) The opening reaches wf in subsequent loads; the tractions (tc) must be zero at this point 
in the cohesive zone according to eqn (3). The absence of tractions in the normal and 
tangent directions causes the tractions in the direction xi to be zero. The tractions (tci) at 
this point on the crack surfaces are eliminated from the system of equations:

 tc
1 0=  (12)

 tc
2 0=  (13)

The boundary element code was derived from that used in [10]. Linear mapping functions 
were used to represent the displacements and tractions in the boundary elements. The same 
mapping function was used for conformal and non-conformal interpolations with nodal 
parameters positioned at the ends of the elements. The collocation points were always posi-
tioned on the boundary line at the position (ξ’) in the range (−1, 1): (i) ξ’= −0.67 for 
continuous elements, and (ii) ξ’= −0.67 and ξ’= +0.67 for discontinuous elements. Analytical 
expressions were used to evaluate the singular integrals in the Cauchy principal value sense, 
and the Gauss-Legendre scheme was used for regular integrals.

5 NUMERICAL EXAMPLE
A single edge crack in a rectangular specimen was studied under uniform far-field tensile load-
ing to consider displacement-controlled elongation (Fig. 5). The specimen was a rectangle with 
a length of l and a height of h, and both were equal to l in the simulations. All the lengths are 
normalized by l; while this is not a natural length scale for fracture problems, it is convenient 
and easy to interpret. The initial length of the single edge crack (a0) had values in the range 
(0.03, 0.58), Poisson’s ratio was 0.3, and plane strain conditions were adopted according to [15].

As was discussed for the cohesive model, the physical crack tip was positioned at the end of 
the initial length a0, where the opening could be wf, and the fictitious crack tip was positioned at 
the end of the cohesive zone ZC, where the normal traction value could be py (or lower than py). 
The parameters py and wf were equal to 0.01 and 0.001, respectively. It should be noted that all 
the stresses and tractions were normalized by the shear modulus (μ). The unloaded  specimen 
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was initially in a stress-free state and was loaded incrementally perpendicular to the top and 
bottom boundaries under displacement-controlled elongation. The loading displacement incre-
ment was taken to be 1E-5 in tension, and a limit of 2000 load steps was used. The element 
length of the rectangular boundary was 0.05. Double nodes were introduced at the corners and 
at the fictitious crack tip. The element length at the initial crack length (a0) was 0.05, and the 
element length in the cohesive zone (ZC) was 0.025. The analyses were carried out until the first 
element on the cohesive zone was cracked; i.e. the initial crack length was increased by 0.025, 
which is the length of one element. Figure 6 compares the results with those obtained in [15].

The fictitious crack tip first starts to advance during the loading process, and the physical 
crack tip also starts to move with continued loading. The length of the initial crack (a0) intro-
duced instability in the results presented in [15], and the stresses at the point ahead of the 
fictitious crack tip were greater than py even when many cohesive elements were used over 
the length where the crack extension procedure was applied. According to the authors of [15], 
the critical load for the onset of instability decreases with increasing initial crack length. The 
crack extension in [15] became stable with initial crack lengths greater than 0.48.

The issues noted in [15] did not appear with the formulation that was used in this study. 
The loads due to elongation (Fig. 6) were different only slightly when the initial crack length 
(a0) was less than 0.38, and the curves nearly coincide for larger values. The behavior of the 
normal traction in the cohesive zone with this formulation was similar for all values of the 
initial crack length, and they did not differ as was described in [15]. Figure 7 shows the cohe-
sive forces for two initial crack lengths.

Figure 5:  Rectangular specimen with a single edge crack of initial length a0 under 
displacement-controlled elongation. ZC is the cohesive zone.
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6 CONCLUSIONS
The results that were obtained with the proposed formulation were similar to those in [15] 
and did not cause the issues that were noted in that study. The behavior of the proposed for-
mulation was also similar for other problems; they are described in [16]. The direct 
computation of tractions in the cohesive zone required fewer loading steps than were required 
when the iterative procedure was used to obtain tractions based on the initial value for the 
same cohesive law [17].

Figure 6:  Comparison of the results for initial lengths (a0) in the range (0.03, 0.58) with those 
from [15].

Figure 7: Normal tractions in the cohesive zone.
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