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ABSTRACT
Nowadays open-source CFD codes provide suitable environments for implementation and testing 
low-dissipative algorithms typically used for turbulence simulation. Moreover these codes produce a 
reliable tool to test high-fidelity numerics on unstructured grids, which are particularly appealing for 
industrial applications. Therefore in this work we have developed several solvers for incompressible 
Navier–Stokes equations (NSE) based on high-order explicit and implicit Runge–Kutta (RK) schemes 
for time-integration. Note that for NSE space discretization the numerical technology available within 
OpenFOAM (Open-source Field Operation And Manipulation) library was used. 

Specifically in this work we have considered explicit RK projected type schemes for index 2 DAE 
system and L-stable Singly Diagonally Implicit Runge–Kutta (SDIRK) techniques. In the latter case an 
iterated PISO-like procedure based on Rhie–Chow correction was used for handling pressure-velocity 
coupling within each RK stage. The accuracy of the considered algorithms was evaluated studying the 
Taylor–Green vortex. Moreover several benchmark solutions have been computed in order to assess the 
reliability, the accuracy and the robustness of the presented solvers.
Keywords: Runge–Kutta schemes, Incompressible Navier–Stokes, Equations, OpenFOAM

1 INTRODUCTION
Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) not only require 
massively parallel computing facilities due to their high computational cost, but they also 
need accurate numerical methods. Particularly high-resolution space-time discretization 
schemes would be used to ensure a minimal numerical diffusion. An accurate numerics is 
typically adopted only in academic codes with a very limited dissemination to general public. 
Nevertheless open-source CFD codes provide suitable environments for implementation and 
testing low-dissipative algorithms needed for turbulence simulation. Moreover these codes 
produce a reliable tool to test high-fidelity numerics on unstructured grids, which are particu-
larly appealing for industrial applications. Therefore in this work we have developed several 
solvers for incompressible Navier–Stokes equations (INS) based on low-dissipative schemes 
for time-integration.

In this work the finite volume code OpenFOAM (Open-source Field Operation And 
Manipulation), was selected as development environment. Very few research papers dealing 
with Runge–Kutta methods within OpenFOAM code have appeared in literature, [1, 2]. With 
this research work we want to contribute in the OpenFOAM-RK methods development, with 
emphasis to incompressible flows, which are early investigated only by Vuorinen et al. [1].

It is very interesting to remark as the application of RK methods to the INS equations is 
not a trivial task because of the DAE nature of the discretized equations. Many CFD practi-
tioners explicitly advance the velocity at each RK stage using standard techniques for ODE 
systems, thus the Poisson equation for the pressure is solved to guarantee a divergence-free 
velocity field. Anyhow, the impact of this projection-type approach on the temporal order of 
accuracy is not clear [3]. In many papers the accuracy of the velocity is often darkly assumed 
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to be unaffected by the DAE nature of INS. Besides the temporal accuracy of the pressure is 
often not reported.

For the previous reasons we have considered explicit RK-projected-type schemes specifi-
cally developed by Sanderse and Koren [3], for index 2 DAE systems, i.e. Navier–Stokes 
equations. It is worth noting that the projected nature of the previous schemes allows to avoid 
the use of Rhie–Chow correction, thus the previous schemes result efficient and easy to 
implement. Furthermore L-stable Singly Diagonally Implicit Runge–Kutta (SDIRK) schemes 
were also adopted. In this specific case, as will be described in the next sections, an iterated 
PISO-like procedure was used for handling pressure-velocity coupling within each RK stage. 
Finally the developed OpenFOAM solvers were tested and compared computing the steady 
lid-driven cavity flow problem using uniformly spaced computational grids. On the other 
hand the unsteady flow past a cylinder at Re = 140 and the three-dimensional laminar flow 
past a sphere at Re = 300 were studied. In all the cases very satisfactory results were  
obtained.

2 NUMERICAL APPROXIMATION OF INCOMPRESSIBLE  
NAVIER–STOKES EQUATIONS

The incompressible Navier–Stokes equations read
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where u, denotes the velocity vector and p P=
ρ

 is the pressure divided by the density. In 

order to discretize eqn (1) the computational domain is subdivided into Nc  finite volumes and 
each volume is bounded by an arbitrary number of cell faces N f . Therefore the Navier–
Stokes equations are re-written in integral form as regards each finite volume. The 
Gauss–Green divergence theorem is used to convert the volume integrals to surface integra-
tion over the mesh element boundary, thus the semi-discrete Navier–Stokes equations read 
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Extending the discretization process of eqn (2) to each discrete control volume we obtain an 
ordinary differential equation (ODE) system. The details about our solution algorithms 
adopted for time-integration are described in the following subsections.

2.1 Explicit Runge–Kutta methods

In this research work we have used a class of explicit Runge–Kutta (ERK) methods for 
incompressible Navier–Stokes equations developed by Sanderse and Koren [3]. These meth-
ods are based on the following algorithm, expressed for the generic mesh element:
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where i is a generic Runge–Kutta substage.
Note that the terms �Ui and �pi , appearing in eqn (3), are the entries of shifted vectors. Sim-

ilarly also the coefficients �aij and �ci are collected in the shifted coefficients matrix and vector 
[3]. The sequence reported in eqn (3) of first computing a tentative velocity, then the pressure, 
and finally correcting the tentative velocity is similar to fractional step methods. However all 
terms are handled explicitly (except the pressure) and consequently there is no splitting error 
involved as in fractional step approaches [3].

We have also to point out that in eqn (3) the projection of �V onto the space of diver-
gence-free velocity fields is known as a projected Runge–Kutta approach. It leads to the 
classical order of accuracy for the velocity up to the fourth order, as showed by Sanderse and 
Koren [3]. Differently the pressure is only first-order accurate unless additional order condi-
tions are satisfied. In our work we have adopted third order accurate schemes for the velocity 
that lead also to a second-order accurate pressure (the Butcher tableau referred to our imple-
mentations are reported in [3]). It worth emphasizing that the projected nature of the previous 
schemes allows to avoid the use of Rhie–Chow correction even with co-located grids, thus 
the previous schemes result efficient and easy to implement.

2.2 Singly diagonally implicit Runge–Kutta methods

This class of methods allows to solve in each stage a linear system with rank equal to the 
spatial degrees of freedom. Such technique, from an implementation point of view, is very 
attractive since each stage resembles a BDF1 scheme with a source term. Indeed, the discre-
tized momentum equation showed in eqn (2) can be expressed by

 d
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where RP is the residuals vector, hence the solution at each stage of SDIRK scheme can be 
written as:
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Furthermore in the next time-step UP is updated by:
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where s is the total number of RK stages.
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It is also worth noting that in our work, for each implicit RK stage, we have used a PISO 
algorithm in order to handle the pressure-velocity coupling consisting of: (i) discretized 
momentum equation solution (predictor step); (ii) Poisson equation for pressure solution; 
(iii) cell-center velocity, face velocity and mass-flux correction. We have to note that face 
residual vector, R f

i( ) is obtained by the discretized form of a SDIRK stage, as in [4]. Kazemi-
Kamyab et al. [4] showed that this technique allows to avoid temporal order reduction 
suffered by several implementation techniques analyzed in the present literature. Lastly in 
this paper we have used stiffly accurate SDIRK schemes having the following feature: 
a bsj j= . Hence the solution of the last stage is equal to the solution of the new time level: 
U UP P

( ) ( ) .n s+ =1  This condition allows to avoid the use eqn (6). In this research work we have 
considered two different SDIRK techniques having, respectively 3, [5], and 5, [6], stages. In 
particular the first approach has a third order of accuracy (SDIRK 3-3) while the second the 
fourth order (SDIRK 4-5).

3 RESULT
In this section we present solutions of different flow problems in order to assess the relia-
bility and robustness as well as the accuracy of the presented RK methods for INS 
equations.

For the reported cases a preconditioned bi-conjugate gradient method (PBiCG) with DILU 
preconditioner was used for the velocity. Differently for the pressure a preconditioned conju-
gate gradient method (PCG) with a diagonal incomplete-Cholesky preconditioner was 
adopted. In particular linear system for pressure was solved using a local accuracy of 10−7 
differently the system for the velocity was considered converged when the residuals reached 
10−9. All the solutions have been computed on a small Linux Cluster with 6 Opteron nodes 
for a total of 96 cores operating at 2.4 GHz.

3.1 Taylor–Green vortex

The first aim of this test is to demonstrate that the schemes, described  in section 2, allow to 
march in time preserving the expected temporal accuracy. A square computational domain 
with: Ω = −[ ]1 1,  was used. The Dirichlet boundary conditions as well as initial condition 
were deduced by the exact solution. The computations were run with Re = 100 using a uni-
formly spaced quadrilateral grid having 128 × 128 cells. The convergence rate, for velocity 
and the pressure error, of the proposed schemes was evaluated in L2 norm. The results are 
summarized in Fig. 1, where it is easy to observe as the theoretical order of accuracy is satis-
factorily retained.

3.2 Lid-driven cavity flow

As first test case, we consider the two-dimensional lid-driven cavity flow. The computational 
domain for this problem is a box with edges of unit length. The top side of the cavity slides 
with a constant imposed velocity, while no-slip Dirichlet boundary conditions are fixed on 
the remaining sides. Here we have considered the cases with Re = 103 and Re = 2.5 · 103 
using uniformly spaced computational grids having quadrilateral type cells. Grids with Nc  
from 642 to 2562 were used. The previously cited flow problems are steady ones. They were 
considered as preliminary test cases in order to verify the proposed methods ability to con-
verge to steady-solutions.
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In Fig. 2 are showed the obtained results for Re = 103. The proposed solvers produce very 
close results; for the sake of clearness in Fig. 2 only the results obtained with SDIRK 4-5 are 
reported. With the 1282 cells grid the results show a very close match with the reference data 
of Erturk et al. [7], for the velocity, Fig. 2a. Very good agreement is obtained with Botella and 
Peyret [8], benchmark results for the pressure distribution.

A similar situation is evidenced for the Re = 2.5 · 103 case. In particular in Fig. 3 are 
reported only the results related to our SDIRK 3-3 solver. However a 2562 cells grid is needed 
to reach a very close fitting with Erturk et al. [7] data, Fig. 2a. A final remark concerning to 
this benchmark case is concerned to the At size choice. The time-step size was fixed in order 
to obtain a maximum Courant number, Comax, lesser than 0.5.

Figure 1: L2 norm error as a function of ∆t.

Figure 2: Lid-driven cavity flow. Re = 1000. SDIRK 4-5.
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3.3 Flow past a cylinder at Re = 140

The first unsteady test case considered in this work is the flow past a circular cylinder at  
Re = 140. It is well known that this flow field exhibits the Karman vortex street, as repre-
sented in Fig. 4a. For this case we have built an O-type grid having Nc = 6 · 104 and the 
far field boundary was placed at 25 times the cylinder diameter. All the developed solvers 
were benchmarked on this flow case with different time-step sizes. Note that a report of 
the considered cases is disclosed in Table 1. More precisely in Table 1 the solutions are 
compared on the basis of the average drag coefficient: C D , force coefficients oscillation 

amplitudes ∆ = ( ) ∆ = ( )( )C C C CD D L L, ,max D,min max L,min-C -C2 2and  and the Strouhal 

number St = fD/U
∞, where f the frequency of the vortex shedding. We have to put in evidence 

Figure 3: Lid-driven cavity flow. Re = 2500. SDIRK 3-3.

Figure 4: Cylinder, Re = 140.
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that for the sake of compactness only solutions with smaller time-step size are reported  
in Table 1.

The mean drag coefficient was determined in the range Cd = ÷ 1 31 1 32.. .  The val-
ues are in very good agreement with DNS results of Inoue and Hatakeyama [9] and 
Muller [10] high-order finite difference data. As regards the force coefficients ampli-
tudes we have obtained ∆ = ÷ ∆ ⋅ = ÷C CL D0 47 0 49 10 2 16 2 212. . . .and  which are in good 
agreement with reference solutions and experiments. The computed Strouhal number was 
0.180 and also in this case the flow parameter exhibits a very good agreement with main 
literature references available in Table 1. Finally Fig. 4b shows that, for our finest solu-
tions, the average pressure coefficient (on the cylinder wall) is in good agreement with  
literature, [9].

3.4 Flow past a sphere at Re = 300

The flow past a sphere was also considered in this work in order to assess the solvers perfor-
mance on three-dimensional configurations. The case with Re = 300, represented in Fig. 5, 

Table 1: Cylinder at Re = 140.

Case u∞ Δt/D 〈 〉C D ΔCD·102 ΔC L St

SDIRK 3-3 10−3 1.3224 2.21 0.4904 0.1805
SDIRK 4-5 10−3 1.3243 2.25 0.490 0.1805

ERK3 10−3 1.3168 2.160 0.4778 0.1805

Inoue and Hakateyama [9] - 1.32 2.6 0.52 0.183

Muller [10] - 1.34 2.6 0.52 0.183

Isaev et al. [11] - 1.27 1.1 0.4 0.172

Lysenko et al. [12] - 1.33 2.3 0.478 0.18

Figure 5: Sphere, Re = 300.
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Figure 6: Times history of force coefficients. Sphere, Re = 300.

was selected as case study since it is markedly in the unsteady regime. The solutions were 
computed using a grid built on the half of the sphere adopting a symmetry plane with Nc = 
1.5 · 106. The far field boundary was placed at 15 times the sphere diameter. The flow features 
are clearly reflected on the time histories of the lift coefficient C

l
 and drag coefficient C

d
 

reported in Fig. 6.
In Table 2 is showed a report of the performed computation for this test case together with 

literature references. It also put in evidence as our solutions show a good agreement with 
reference one and experimental data. Also for this benchmark we have used different ∆t to 
compute the flow field. However we have clearly noted the effect of the implicit approach. 
Indeed, the largest time-step size admitted by SDIRK solvers is significantly greater than 
ERK one. Lastly we have to remark that the SDIRK 3-3 and SDIRK 4-5 methods produce 
very similar results. On the other hand ERK technique underestimates the mean drag coeffi-
cient showing a very good agreement with other flow parameters.

Table 2: Sphere at Re = 300.

Case u∞Δt/D Cd ΔCD·103 CL·102 ΔCL·102 St

SDIRK 3-3 5 · 10−3 0.6602 2.58 7.03 1.37 0.1342
SDIRK 3-3 2.5 · 10−2 0.6604 2.63 7.01 1.40 0.133

SDIRK 4-5 5 · 10−3 0.6601 2.56 7.04 1.35 0.1341

SDIRK 4-5 2.5 · 10−2 0.6603 2.66 7.01 1.40 0.133

ERK3 5 · 10−3 0.6564 2.57 7.0 1.36 0.1345

Crivellini et al. [13] — 0.659 2.7 6.7 1.4 0.138

Costantinescu and Squires [14] — 0.655 3.2 6.5 — 0.136

Johnson and Patel [15] — 0.656 3.5 6.9 1.68 0.138

Ploumhans et al. [16] — 0.683 2.5 6.1 1.48 0.135
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4 CONCLUSIONS
In this work several OpenFOAM solvers for incompressible Navier–Stokes equations (NSE) 
based on high-order explicit and implicit RK schemes for time-integration were developed. 
The effectiveness of the proposed approaches was evaluated computing several standard 
benchkmarks for incompressible flows. The obtained results were very satisfactory. Note that 
the present solvers have also showed very good performance for transitional flows; these 
results are not presented for brevity. Future work will be devoted to turbulent flows computa-
tions and the obtained results will be presented in a future paper.
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