
© 2016 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V4-N2-100-113

 F.J. Navarro-González & Y. Villacampa, Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 2 (2016) 100–113

A FINITE ELEMENT NUMERICAL ALGORITHM FOR 
MODELLING AND DATA FITTING IN COMPLEX SYSTEMS

F.J. NAVARRO-GONZÁLEZ & Y. VILLACAMPA
Department Applied Mathematics, Alicante University. Apartado 99, E-03080. Alicante. Spain

ABSTRACT
Numerical modelling methodologies are important by their application to engineering and scientific 
problems, because there are processes where analytical mathematical expressions cannot be obtained to 
model them. When the only available information is a set of experimental values for the variables that 
determine the state of the system, the modelling problem is equivalent to determining the hyper-surface 
that best fits the data.
This paper presents a methodology based on the Galerkin formulation of the finite elements method 
to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, 
x2,...., xd). These representations are generated from the values of the variables in the experimental data. 
The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general 
sense into this space. The using of this approach results in the need of inverting a linear system with a 
structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a 
multidisciplinary tool.
The validity of the methodology is studied considering two real applications: a problem in hydro-
dynamics and a problem of engineering related to fluids, heat and transport in an energy generation 
plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation 
method.
Keywords: complex systems, fast algorithm, finite elements, galerkin, modelling.

1 INTRODUCTION
Given a system and a set of variables x x xd y1 2, ,...., ,



  that determine its state, the modelling 

problem is usually to obtain, in anyway, the unknown relation given by y = z(x). The form of 

this dependence must be fixed using a set of experimental data x ,x , ,x ,yk k
2

k
d

k
k= , ,p

[ ] [ ] [ ] [ ]( ){ }1
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This is why the problem is also called the data fitting problem.
Sometimes the forms of these relations are known or at least can be supposed. The linear 

regression is a well-studied case in which the variables obey the equation:

 
y x xd

d= + ⋅ + + ⋅a b b1
1 ...

 (1)

However, the linear relations are a good tool for processes that are near the system equilib-
rium points, but usually they are not useful far from there. In natural problems, the number of 
non-linear and chaotic processes is greater that the linear ones.

If the relation is not linear, but it is known, the problem consists also in the calculation of 
some unknown parameters ( , .. )l l1 Q  of the expression using the data.

 
y z x xd Q= ( )1

1,..., , ,..l l
 (2)

Determining the values of the parameters of the model can be done minimizing an error 
function defined over the experimental points. The usual method is to consider the mean 
square error (MSE) of the estimated values on the experimental points.
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In the general case, when neither the relation nor the number of parameters is known, the 
methodologies can be oriented to obtain an analytical expression or a numerical approxima-
tion to the relation (2).

Data fitting is related to the problem of interpolating a set of points, but there is a key 
 difference between them: in the data fitting problem, the error on the experimental points 
cannot be assumed as null, because the existence of an experimental error:

 y z xk k k[ ] [ ] [ ]= ( ) + e  (4)

However, methods related to the multivariate interpolation problem (radial basis function, 
full and sparse grid interpolations, and multivariate splines) are sometimes used in the n-di-
mensional numerical data fitting problem. Also, other techniques, as neural networks, radial 
basis function nets, kernel regression, and so on are widely used. Other methodologies have 
been presented in [1] and [2] to model (2) thought mathematical equations.

The finite element method (FEM) is a well-known method with a wide amount of applica-
tions as solid mechanics, fluid flow, electricity and magnetism, heat transfer and other 
problems. In engineering, is used for the design of structures, the study of materials, and so 
on. 

The applications mentioned above use the FEM to solve approximately the differential 
equations that govern the system behaviour. The method transforms the differential equation 
in a system of linear equations, whose unknown variables are the values of the function in a 
defined set of points called nodes.
The use of FEM in the methodology presented in this paper gives as a result of the data fitting 
problem an element of a Sobolev space, that is, a piecewise function with derivatives defined 
in a general way. It is an evolution of those presented in [3–7]. There is no need for additional 
conditions or constraints for the regression hyper-surface, resulting in a substantial improve-
ment in the applicability and the algorithmic efficiency.
The definition of a slightly different error function, defined over the entire function domain, 
allows the use of the Galerkin weighted residual method, resulting in a Kronecker-product 
system matrix with an efficient inversion algorithm.

2 THE FINITE ELEMENT METHOD
The FEM is widely used in engineering problems. Given a differential equation defined by a 
differential operator D:

 D f v( ) =  (5)

Where f,v V∈  and V is a function space. The FEM replaces V by a finite dimensional 

subspace V Vh ⊂  which is composed by continuous piecewise polynomial functions of 

degree K, associated with a division of the domain Ω where the problem is defined in Ne parts 
called elements.

 
Ω =

=
∪
i

eN

1
 (6)
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The problem to solve is now:

 D fh vh( ) =  where f ,v Vh h h∈  (7)

Considering a basis for the functions of Vh and supposing dimVh N= :

 
V x x xh N= ( ) ( ) ( )j j j1 2, ,....,  (8)

The approximate solution takes the form:

 fh x ui i xi

N
( ) = ⋅ ( )

=
∑ j

1  (9)

The values of ui must be determined to get a good approximation for the solution to the 
differential equation.

The basis is selected considering a set of N points called nodes where:

V V V j V d1 2, ,........., /N i j ij( ) ( ) =

The functions of the basis are called shape functions, and they are used to interpolate in 
points different from the nodes. The approximate function is part of a Sobolev space.

3 GALERKIN’S WEIGHTED RESIDUAL METHOD
Weighted Residual Methods (WRMs) are used in the solution of Partial Differential Equa-
tions, looking for a function that is the solution of the problem [8–10]. Given the eqn (3), an 
error or residual function can be defined as the difference between the solution and its approx-
imation,

 e x f x fh x f x ui i xi

N( ) ( ) ( ) ( ) ( )= − = −
=
∑ j

1
 (10)

WRMs represent a set of methods where an integral of this error is minimized in a way that 
characterizes each method, depending on the selected weight function (collocation method, 
sub-domain method, Least Square Method, Galerkin method, method of moments):

 e x W j x dxD i N( ) ⋅ ( )∫ = =0 1 2, , ,....,      (11)

Where the number of weight functions W xj ( )  is equal to the number of unknown ui con-
stants.

In the Galerkin’s method, the N unknown parameters are obtained by selecting as weight 
functions the same functions used in the approximation of f, Wj x j x( ) = ( )j .

3.1 Use of finite elements in numerical data fitting. Direct and Lagrangian formulation

Given an unknown relation y =z(x), defined on a domain Ω and a sample of points obtained 

from it: x x yk k
d

k k P[ ] [ ] [ ] =
( ){ }1

1
,..., ,

..
The problem is to approximate the relation to be able to estimate its value in any point of 

the domain. When the form of the relation is supposed, the problem can be solved for 
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 determining the values of the parameters included in the expression (usually minimizing a 
sum of squared errors).

If no assumptions on the relation expression can be done, one can consider using general 
techniques as neural networks, radial basis functions, etc.

In [5–7], a methodology that applies the FEM to obtain numerical models for an unknown 
relation between the variables was presented by the authors, defining an error function over 
each possible solution zh x Vh( ) ∈  (representation) for the desired relation. Using as varia-
bles, the values of the objective function in the nodes of a partition of the domain where the 
function is defined, the problem considered is:

 

e

e u uN zh x k u uN z k
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,...., ; ,....,
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=

∑
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This function can be minimized, considering the derivative:
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Reordering terms, and imposing the character of extreme:

 j j jr k j k
k

P

j
j

N

k r k
k

P

x x u z x[ ] [ ]
==

[ ] [ ]
=

( )⋅ ( )







⋅ = ⋅ ( )∑∑ ∑
11 1

 (14)

This is a linear system, and can be solved for the variables u ,u , ,uN1 2 ....( ) . But in most 

cases, the system is under-determined, so it is necessary to add some extra equations to obtain 
a unique solution.

There are different options to obtain an invertible matrix, but they have one point in com-
mon. The original matrix is transformed using a regularization term (or a rigidization term in 
the terminology used by the authors in previous papers by physical considerations). In the 
paper [6] and [7], the function to minimize is:

 

E

E u u z x u u z DN h k N k
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P

: :

,...., ; ,....,
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( ) = ( ) −



 + ⋅[ ] [ ]
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 (15)

And the system takes the form:

 j j l jr k j k
k

P

rj j
j

N

k r k
k

x x R u z x[ ] [ ]
==

[ ] [ ]
=

( )⋅ ( ) + ⋅








⋅ = ⋅ ( )∑∑
11 11

P

∑  (16)

If the data are normalized, the problem can be studied on the domain Ω = [ ]0 1,
d

. Using 

linear squared elements with volume hd c
d

= ( )1 , where the parameter c is called the 

 complexity, the system has a symmetric matrix with size c
d

c
d

+ × +( ) ( )1 1 .
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Different algorithms can be used to obtain the solution of the system, from LU decompo-
sition to techniques based on Krylov subspaces, with limits for the computational cost 

t c d,( )  given for the mathematical operations on the matrix elements of:

 o c t c d o cd d+( )



 ≤ ( ) ≤ +( )





⋅ ⋅1 12 3,  (17)

These values depend on the characteristics of the matrix (symmetry, sparseness, positive 
definiteness).

4 DATA FITTING METHOD USING THE GALERKIN METHOD
Let y = z(x) an unknown relation defined on a domain Ω and a sample of points obtained 

from it: x x yk k
d

k k P[ ] [ ] [ ] =
( ){ }1

1
,..., ,

..

Given a discretization of the domain with size h c= 1 , the approximate solution has the 
form

 z x u xh i i
i

N

( ) = ⋅ ( )
=
∑ j

1
 (18)

An error function can be defined as:

 e x z x z x z x u xh i i
i

N

( ) = ( ) − ( ) = ( ) − ⋅ ( )
=
∑ j

1

 (19)

Using the weighted residual method, optimum values of u can be calculated:

 z x u x W x d x j Ni i
i

N

j
d

d ( ) − ⋅ ( )





⋅ ( ) = =
=[ ] ∑∫ j

1
0 1

0 0
,

..  (20)

At this point, an approximation for the z(x) function is needed to calculate the integrals 
(11). But this is the goal of the process, so a shortcut would be useful. The function z(x) can 
be roughly estimated using a radial base function-like approach, to obtain a piecewise 
non-continuous set of constant values for each element of the discretization. The Galerkin’s 
conditions will account of this discontinuity obtaining a smooth hyper-surface for zh x( ) :

 z x z x z where xE E E( ) ≈ ( ) = ∈{ }{ } { } Ω  (21)

A radial basis function is a function that only depends on a distance to a point y hx E−( ) . 
Sums of radial basis functions are used to approximate unknown functions from a set of val-
ues. They can be seen as a simple neural network approximation. They are used frequently as 
kernels in support vector machines and probability density estimation algorithms.

Where the estimated values are calculated as:

 z y xE r r E
r

P

{ } [ ] [ ]
=

= ⋅ −( )∑ y h
1

 (22)

Being the centre of the e-th element.
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Introducing the multi-indexes

I i id J j jd jr c E e ed er→ ( ) → ( ) ∈{ } → ( ) ∈1 1 0 1 1 0,..., , ,..., , ..., ,..., ,11 1...,c −{ }( )
For the elements and the nodes of the discretization:

 z x z x z where xE e e e ed d
( ) ≈ ( ) = ∈{ }{ } { }1 1,..., ,...,Ω  (23)

These multi-indexes are just a convenient form of numeration for the different nodes and 
elements. For example, let consider the nodes. In dimension one, the nodes are indexed by 
their global index from 0 to c. In the two-dimensional case, the nodes have indexes from 0 to 
(c+1)2 −1, but they are distributed on a squared net, so considering each position separately, it 

is possible to give a pair of coordinates i i1 2,( )  to determinate each one, where i ck ∈[ ]0, . 

This pair i i1 2,( )  are the multi-indexes corresponding to the considered node. A similar 

 reasoning can be applied to define the element multi-index numeration.
So, given that the finite elements, we are considering squared and homogeneous, the struc-

ture can be viewed as the product of unidimensional equally spaced intervals, as shown in 
Fig. 1

The combination of the Galerkin’s WRM and squared elements gives a specially appropri-
ated form to the resulting system:

 z u xE x i i i i
i i

jd d

d

d ( ){ }[ ]
− ⋅ ( )





⋅∑∫ 1 1

1
0 1 ,..., ,...,

,...,
,

j j
11

0,..., j
d

d
x d x( ) =  (24)

The shape functions in the case of linear elements can be decomposed in the product of 
one-dimensional shape functions as:

 j j j jj j
d

j j j
d

d d
x x x x x

1 1 2

1 1 1 1 2 1
,..., ,...,( ) = ( )⋅ ( )⋅⋅⋅ ( )[ ] [ ] [ ]  (25)

Figure 1: Multi-index coordinate system.
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The expression of each one is:
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So, the weighted errors are:

 z x d x u xE x j j
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For the left term:

z x d x z xE x j j
d

e e j jdd d( ){ }[ ] [ ]
[ ]⋅ ( ) = ⋅ ( )⋅∫ j j j

1 1 1 20 1

1 1
,...,, ,...

11 2 1

1
1 1

[ ] [ ]

∈ ( )
( )⋅⋅⋅ ( )∫ x x d xj

d d

adj j j
d

e ed
e ed d

j
Ω

Ω ,...
,... ,...,

∑∑ =

⋅ ( )⋅ ( )⋅⋅⋅ ( )[ ]
[ ] [ ] [ ]z x x x d xe e j j j

d d
d d

e 1 1 2
1

1 1 1 2 1
,...

,..

j j j
Ω ..

,... ,...,

,...

ed
e ed d

d

adj j j

e e j jz x

∫∑
∈ ( )

[ ]
[ ]

=

⋅ ( )⋅

Ω 1 1

1 1 2

1 1 1j j[[ ] [ ]

∈ ( )
( )⋅⋅⋅ ( )∫∑ x x d xj

d d

adj j j
d

e ed
e ed d

2 1

1
1 1

j
Ω

Ω ,...
,... ,...,

==

⋅ ( ) ⋅⋅⋅⋅⋅[ ]
[ ]







[ ]
−

∫z x dx xe e jx x j
d d

d j j
d1 1

1 1
1

1
1

1 1 1
,... ,

j j (( )
−





∈ ( )

∫∑ dxd
x x

adj j j jd
d

jd
d

e ed d
1

1 1
,

,...,,...Ω (28)

Where Ωe ed1,..,  are the elements adjacent to the node j jd1,...,( ) .
Calculating the integrals the left term is:
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The other side of the equation is:
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Writing the system using matrix:

M M u Z

u Z M

d
E

E adj

E

d
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{ }
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{ }

{ }
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∑...... ......3

3 1

e e
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{ }
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1 e

where M is the tridiagonal matrix:
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0 1 4 0 0 0

0 0 0 4 1

...

...
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Higher order polynomials could be used to improve the approximation of the method, but 
they would imply a lost in the characteristics of the algorithm by two causes. First, the linear 
form allows to construct the global system matrix as the Kronecker product of identical 
matrices that has a specially convenient form. Also the ‘one-dimensional-related’ tridiagonal 
matrix has a simple expression that would vary in the case of using higher order approxima-
tion functions.

5 RESULTS
Three examples are used to test the behaviour of the methodology. The first involves a six-
dimensional problem from fluid dynamics, while the second is a test of performance for a 
four-dimensional problem with a great number of experimental points. In the last example, a 
random subset of training and test points are selected from the second four-dimensional 
 problem dataset to test the power of prediction of the algorithm.

5.1 Yacht hydrodynamics data

The main goal of the methodology is to extend the applicability to the problems of dimen-
sionality greater than 4 that was a practical limit for the previous methodologies [3,5–7] 
given the high time of computing.

For the first example, data from the UCI Machine Learning Repository have been selected 
[1] (Yacht Hydrodynamics data set, which have dimension six). The objective variable is the 
residuary resistance of sailing yachts considering as inputs the basic hull dimensions and the 
boat velocity. The Delft data set comprises 308 full-scale experiments, which were performed 
at the Delft Ship Hydromechanics Laboratory for that purpose. Previous papers have studied 
this datasets [11,12].

These experiments include 22 different hull forms, derived from a parent form closely 
related to the Standfast 43 designed by Frans Maas.
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The considered variables are:

•  Longitudinal position of the centre of buoyancy, adimensional

 • Prismatic coefficient, adimensional

 • Length-displacement ratio, adimensional

 • Beam-draught ratio, adimensional

 • Length-beam ratio, adimensional

•  Froude number, adimensional

And the measured variable is the residuary resistance per unit weight of displacement, and 
the residuary resistance per unit weight of displacement is adimensional.

The complexity used for the calculus is 25. This gives a number of nodes for the problem 
near of 300 millions. The program has been run on a computer with 2 GHz dual core. The 
elapsed time has been of 15 hours approximately (Fig. 2).

The coefficient of determination of the model is R2 = 0.992574.
This can be seen again in other form, using Fig. 3.
The REC curve of the model is represented in Fig. 4.

The order of the algorithm can be seen in Fig. 5, where the variable log(time) is  represented 

over log(complexity). A linear regression gives a relation time complexity≈ 5 81.

5.2 Combined cycle power plant data set

To test the methodology with a high number of experimental points, the ‘Combined Cycle 
Power Plant’ (CCPP) data from the UCI Machine Learning Repository is studied. The dataset 
is defined in [13]:

“The dataset contains 9568 data points collected from a CCPP over 6 years (2006–2011), 
when the power plant was set to work with full load. Features consist of hourly average ambi-
ent variables Temperature (T), Ambient Pressure (AP), Relative Humidity (RH) and Exhaust 
Vacuum (V) to predict the net hourly electrical energy output (EP) of the plant. A CCPP  is 

Figure 2: Estimated versus experimental values.
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Figure 3: Comparison of values between points (value ordered).

Figure 4: REC curve for the yacht hydrodynamics’ model.

Figure 5: Time for computation.
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composed of gas turbines (GT), steam turbines (ST) and heat recovery steam generators. In a 
CCPP, the electricity is generated by gas and ST, which are combined in one cycle, and is 
transferred from one turbine to another. While the Vacuum is collected from and has effect on 
the Steam Turbine, the other three of the ambient variables collected the GT performance”.

The model has been calculated using a complexity of 30. The coefficient R2 of the model 
is R2 = 0.974456, and the computing time has been 18 min 44 s.

This can be seen again in other form, using Fig. 7.
The REC curve of the model is represented in Fig. 8.
These results can be compared with those obtained in previous studies [13].

The time for the computation follows the equation time complexity≈ 3 6. , as can be seen 

from Fig. 9.

Figure 6: Estimated versus experimental values.

Figure 7: Comparison of values between points (value ordered).
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Figure 8: REC curve for the Combined Cycle Power Plant data.

Figure 9: Time for computation.

5.3 Testing the results: yacht hydrodynamics

A random set of 270 points are extracted for the ‘Yacht Hydrodynamics’ dataset. The other 
38 points are used as test set. The results obtained by the methodology can be shown in Figs. 
10 and 11.

6 CONCLUSIONS
The problem of modelling a complex system using analytical or numerical methodologies is 
widely present in natural and social sciences, and engineering.

In some cases, linear and non-linear regression techniques are used. However, doing this is 
equivalent to the knowledge of the kind of the relation between the variables. In the general 
case, this relation is unknown and no assumptions can be done. For problems with several 
variables, other techniques as neural networks are frequently used. Neural networks results 
are dependent on the network parameters: number of hidden layers and neurons, epoch, 
learning rate, and so on, and the results have not always an easy interpretation.

The methodology presented in this paper continues the previous research line of the 
authors, directed to study numerical modelling techniques and improves the computational 
efficiency of the available algorithms.
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The use of the FEM allows obtaining numerical models with a clear mathematical mean-
ing. The existence of a definition of derivatives in a general (weak) form can also be considered 
as a positive factor. The present formulation of the problem using a Galerkin approach 
improves the computational complexity ( O c d+[ ]( )1 , compared with the previous methodolo-
gies O n d+[ ] ⋅( )1 3 ).

Also, the new approach allows an easy implementation of a parallelized version of 
the  algorithm to obtain faster and further results in complexity and dimensionality. The devel-
opment of these parallel versions of the algorithm is the main investigation line in future studies.

Other investigation lines would be the study of the approximation error behaviour depend-
ing on c and d, and the introduction of cross validation techniques to determine the most 
convenient complexity.
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